|
|
@ -11,6 +11,56 @@ |
|
|
|
|
|
|
|
|
|
|
|
@section neuro-intro Overview |
|
|
|
@section neuro-intro Overview |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@subsection nature Natural Neural Network |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
From <a href="https://en.wikipedia.org/wiki/Neuron">Wikipedia</a>: |
|
|
|
|
|
|
|
«A neuron is an electrically excitable cell that processes and |
|
|
|
|
|
|
|
transmits information through electrical and chemical |
|
|
|
|
|
|
|
signals. These signals between neurons occur via synapses, |
|
|
|
|
|
|
|
specialized connections with other cells. Neurons can connect to |
|
|
|
|
|
|
|
each other to form neural networks. Neurons are the core |
|
|
|
|
|
|
|
components of the brain and spinal cord of the central nervous |
|
|
|
|
|
|
|
system, and of the ganglia of the peripheral nervous system.» The |
|
|
|
|
|
|
|
neuron connects with dendrites to the world or to the axon of |
|
|
|
|
|
|
|
other neuirons. The neurites (dendrite or axon) transport |
|
|
|
|
|
|
|
electrical stimulation to the cell, which emits the signal to the |
|
|
|
|
|
|
|
dendrites if the activation reaches a certain level. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dot |
|
|
|
|
|
|
|
digraph g { |
|
|
|
|
|
|
|
rankdir=LR; |
|
|
|
|
|
|
|
ranksep=0.8; |
|
|
|
|
|
|
|
node [shape=hexagon]; |
|
|
|
|
|
|
|
edge [arrowhead=none]; |
|
|
|
|
|
|
|
subgraph clusterInput { |
|
|
|
|
|
|
|
label="sensors"; |
|
|
|
|
|
|
|
color="white"; |
|
|
|
|
|
|
|
node [shape=point]; |
|
|
|
|
|
|
|
I0; I1; I2; I3; I4; I5; I6; I7; I8 I9; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
subgraph clusterOutput { |
|
|
|
|
|
|
|
label="actors"; |
|
|
|
|
|
|
|
color="white"; |
|
|
|
|
|
|
|
node [shape=point]; |
|
|
|
|
|
|
|
O0; O1; O2; O3; O4; O5; O6; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
I1 -> Cell1 [label="axon";taillabel="synapse"]; |
|
|
|
|
|
|
|
{ I2; I3; I4; } -> Cell1; |
|
|
|
|
|
|
|
{ I5; I6; I7; I8; } -> Cell2; |
|
|
|
|
|
|
|
{ I4; I6; I9; I0; } -> Cell3; |
|
|
|
|
|
|
|
Cell1 -> Cell8 [label="axon / dendrite"]; |
|
|
|
|
|
|
|
Cell1 -> { Cell2; Cell4; Cell5; } |
|
|
|
|
|
|
|
Cell2 -> { Cell4; Cell5; Cell6; Cell8; } |
|
|
|
|
|
|
|
Cell3 -> { Cell4; Cell6; Cell7; Cell8; } |
|
|
|
|
|
|
|
{ Cell4; Cell5; Cell6 } -> { Cell7; Cell8; } |
|
|
|
|
|
|
|
Cell7 -> { O0; O1; O2 }; |
|
|
|
|
|
|
|
Cell8 -> { O3; O4; O5; }; |
|
|
|
|
|
|
|
Cell8 -> O6 [label="dendrite"]; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
@enddot |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@subsection art Artificial Neural Network |
|
|
|
|
|
|
|
|
|
|
|
A complex neural network can be imitiated as a vector @c I of @c i |
|
|
|
A complex neural network can be imitiated as a vector @c I of @c i |
|
|
|
input values, a vector @c O of @c o output values and any number |
|
|
|
input values, a vector @c O of @c o output values and any number |
|
|
|
@c l of hidden layers, where each of them contains @c h |
|
|
|
@c l of hidden layers, where each of them contains @c h |
|
|
@ -67,26 +117,12 @@ |
|
|
|
Ox [label=<O<SUB>…</SUB>>]; |
|
|
|
Ox [label=<O<SUB>…</SUB>>]; |
|
|
|
Oo [label=<O<SUB>o</SUB>>]; |
|
|
|
Oo [label=<O<SUB>o</SUB>>]; |
|
|
|
} |
|
|
|
} |
|
|
|
I1 -> { H11; H12; H1x; H1h; } |
|
|
|
{ I1; I2; Ix; Ii; } |
|
|
|
I2 -> { H11; H12; H1x; H1h; } |
|
|
|
-> { H11; H12; H1x; H1h; } |
|
|
|
Ix -> { H11; H12; H1x; H1h; } |
|
|
|
-> { H21; H22; H2x; H2h; } |
|
|
|
Ii -> { H11; H12; H1x; H1h; } |
|
|
|
-> { Hx1; Hx2; Hxx; Hxh; } |
|
|
|
H11 -> { H21; H22; H2x; H2h; } |
|
|
|
-> { Hl1; Hl2; Hlx; Hlh; } |
|
|
|
H12 -> { H21; H22; H2x; H2h; } |
|
|
|
-> { O1; O2; Ox; Oo; } |
|
|
|
H1x -> { H21; H22; H2x; H2h; } |
|
|
|
|
|
|
|
H1h -> { H21; H22; H2x; H2h; } |
|
|
|
|
|
|
|
H21 -> { Hx1; Hx2; Hxx; Hxh; } |
|
|
|
|
|
|
|
H22 -> { Hx1; Hx2; Hxx; Hxh; } |
|
|
|
|
|
|
|
H2x -> { Hx1; Hx2; Hxx; Hxh; } |
|
|
|
|
|
|
|
H2h -> { Hx1; Hx2; Hxx; Hxh; } |
|
|
|
|
|
|
|
Hx1 -> { Hl1; Hl2; Hlx; Hlh; } |
|
|
|
|
|
|
|
Hx2 -> { Hl1; Hl2; Hlx; Hlh; } |
|
|
|
|
|
|
|
Hxx -> { Hl1; Hl2; Hlx; Hlh; } |
|
|
|
|
|
|
|
Hxh -> { Hl1; Hl2; Hlx; Hlh; } |
|
|
|
|
|
|
|
Hl1 -> { O1; O2; Ox; Oo; } |
|
|
|
|
|
|
|
Hl2 -> { O1; O2; Ox; Oo; } |
|
|
|
|
|
|
|
Hlx -> { O1; O2; Ox; Oo; } |
|
|
|
|
|
|
|
Hlh -> { O1; O2; Ox; Oo; } |
|
|
|
|
|
|
|
} |
|
|
|
} |
|
|
|
@enddot |
|
|
|
@enddot |
|
|
|
|
|
|
|
|
|
|
@ -110,7 +146,15 @@ |
|
|
|
@endcode |
|
|
|
@endcode |
|
|
|
|
|
|
|
|
|
|
|
@section neuro-backward Back Propagation |
|
|
|
@section neuro-backward Back Propagation |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@page biblio Bibliography |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- <a href="http://www.tornau.name/wp-content/uploads/2009/04/studiumsmaterialien/neuronale_netze_zusammefassung.pdf">Vorlesung Neuronale Netze - Zusammenfassung - Christoph Tornau</a> |
|
|
|
|
|
|
|
- <a href="http://www.neuronalesnetz.de/">Neuronale Netze — Eine Einführung</a> |
|
|
|
|
|
|
|
- <a href="http://alphard.ethz.ch/hafner/Vorles/Optim/ANN/Artificial%20Neural%20Network%20based%20Curve%20Prediction%20Documentation.pdf">Artificial Neural Network based Curve Prediction</a> |
|
|
|
|
|
|
|
- <a href="http://cs231n.github.io/convolutional-networks/">Convolutional Neural Networks (CNNs / ConvNets)</a> |
|
|
|
|
|
|
|
- <a href="https://www.tensorflow.org/versions/r0.9/tutorials/index.html">TensorFlow utorials</a> |
|
|
|
|
|
|
|
- <a href="http://alphard.ethz.ch/hafner/Vorles/Optim/ANN/Artificial%20Neural%20Network%20based%20Curve%20Prediction%20Documentation.pdf">Artificial Neural Network based Curve Prediction</a> |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
|
|
*/ |
|
|
|
template |
|
|
|
template |
|
|
|