From e5306ed9a8b43dab5437f55efd54c1c1cc61d7fa Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marc=20W=C3=A4ckerlin?= Date: Fri, 26 Aug 2016 14:24:29 +0000 Subject: [PATCH] documentation updated --- ax_init_standard_project.m4 | 5 ++- bootstrap.sh | 6 ++- doc/style.css | 13 +++++- src/neuron.hxx | 86 ++++++++++++++++++++++++++++--------- 4 files changed, 86 insertions(+), 24 deletions(-) diff --git a/ax_init_standard_project.m4 b/ax_init_standard_project.m4 index 7c6a416..77fbac8 100644 --- a/ax_init_standard_project.m4 +++ b/ax_init_standard_project.m4 @@ -171,12 +171,13 @@ AC_DEFUN([AX_INIT_STANDARD_PROJECT], [ AX_SUBST(NUMBERS) AX_SUBST(HOME) if test -f README.md; then - README=$() + README=$(tail -n +3 README.md) DESCRIPTION=$(head -1 README.md) else README=$(tail -n +3 README) DESCRIPTION=$(head -1 README) fi + README_ESCAPED=$(echo "$README" | sed ':a;N;$!ba;s/\n/\\n/g;s,",\\",g') if which pandoc 2>&1 > /dev/null; then README_HTML=$(echo "$README" | pandoc -f markdown_github -t html | sed ':a;N;$!ba;s,\\\(.\),\\\\\1,g;s/\n/\\n/g;s,",\\",g;s, ,\ \ ,g') else @@ -184,6 +185,8 @@ AC_DEFUN([AX_INIT_STANDARD_PROJECT], [ fi AX_SUBST(README) _AM_SUBST_NOTMAKE([README]) + AX_SUBST(README_ESCAPED) + _AM_SUBST_NOTMAKE([README_ESCAPED]) AX_SUBST(README_HTML) _AM_SUBST_NOTMAKE([README_HTML]) AX_SUBST(DESCRIPTION) diff --git a/bootstrap.sh b/bootstrap.sh index 8a7c967..466ec5a 100755 --- a/bootstrap.sh +++ b/bootstrap.sh @@ -529,7 +529,11 @@ ${DEFAULT_PROJECT_NAME} add description for ${DEFAULT_PROJECT_NAME} EOF to configure.ac <Wikipedia: + «A neuron is an electrically excitable cell that processes and + transmits information through electrical and chemical + signals. These signals between neurons occur via synapses, + specialized connections with other cells. Neurons can connect to + each other to form neural networks. Neurons are the core + components of the brain and spinal cord of the central nervous + system, and of the ganglia of the peripheral nervous system.» The + neuron connects with dendrites to the world or to the axon of + other neuirons. The neurites (dendrite or axon) transport + electrical stimulation to the cell, which emits the signal to the + dendrites if the activation reaches a certain level. + + @dot + digraph g { + rankdir=LR; + ranksep=0.8; + node [shape=hexagon]; + edge [arrowhead=none]; + subgraph clusterInput { + label="sensors"; + color="white"; + node [shape=point]; + I0; I1; I2; I3; I4; I5; I6; I7; I8 I9; + } + subgraph clusterOutput { + label="actors"; + color="white"; + node [shape=point]; + O0; O1; O2; O3; O4; O5; O6; + } + I1 -> Cell1 [label="axon";taillabel="synapse"]; + { I2; I3; I4; } -> Cell1; + { I5; I6; I7; I8; } -> Cell2; + { I4; I6; I9; I0; } -> Cell3; + Cell1 -> Cell8 [label="axon / dendrite"]; + Cell1 -> { Cell2; Cell4; Cell5; } + Cell2 -> { Cell4; Cell5; Cell6; Cell8; } + Cell3 -> { Cell4; Cell6; Cell7; Cell8; } + { Cell4; Cell5; Cell6 } -> { Cell7; Cell8; } + Cell7 -> { O0; O1; O2 }; + Cell8 -> { O3; O4; O5; }; + Cell8 -> O6 [label="dendrite"]; + } + @enddot + + @subsection art Artificial Neural Network + A complex neural network can be imitiated as a vector @c I of @c i input values, a vector @c O of @c o output values and any number @c l of hidden layers, where each of them contains @c h @@ -67,26 +117,12 @@ Ox [label=…>]; Oo [label=o>]; } - I1 -> { H11; H12; H1x; H1h; } - I2 -> { H11; H12; H1x; H1h; } - Ix -> { H11; H12; H1x; H1h; } - Ii -> { H11; H12; H1x; H1h; } - H11 -> { H21; H22; H2x; H2h; } - H12 -> { H21; H22; H2x; H2h; } - H1x -> { H21; H22; H2x; H2h; } - H1h -> { H21; H22; H2x; H2h; } - H21 -> { Hx1; Hx2; Hxx; Hxh; } - H22 -> { Hx1; Hx2; Hxx; Hxh; } - H2x -> { Hx1; Hx2; Hxx; Hxh; } - H2h -> { Hx1; Hx2; Hxx; Hxh; } - Hx1 -> { Hl1; Hl2; Hlx; Hlh; } - Hx2 -> { Hl1; Hl2; Hlx; Hlh; } - Hxx -> { Hl1; Hl2; Hlx; Hlh; } - Hxh -> { Hl1; Hl2; Hlx; Hlh; } - Hl1 -> { O1; O2; Ox; Oo; } - Hl2 -> { O1; O2; Ox; Oo; } - Hlx -> { O1; O2; Ox; Oo; } - Hlh -> { O1; O2; Ox; Oo; } + { I1; I2; Ix; Ii; } + -> { H11; H12; H1x; H1h; } + -> { H21; H22; H2x; H2h; } + -> { Hx1; Hx2; Hxx; Hxh; } + -> { Hl1; Hl2; Hlx; Hlh; } + -> { O1; O2; Ox; Oo; } } @enddot @@ -110,7 +146,15 @@ @endcode @section neuro-backward Back Propagation - + + @page biblio Bibliography + + - Vorlesung Neuronale Netze - Zusammenfassung - Christoph Tornau + - Neuronale Netze — Eine Einführung + - Artificial Neural Network based Curve Prediction + - Convolutional Neural Networks (CNNs / ConvNets) + - TensorFlow utorials + - Artificial Neural Network based Curve Prediction */ template