C++ Library for Neural Networks — Use libneuron to design neural networks with back propagation and evolution.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

221 lines
8.0 KiB

/*! @file
@id $Id$
*/
// 1 2 3 4 5 6 7 8
// 45678901234567890123456789012345678901234567890123456789012345678901234567890
#include <matrix.hxx>
#include <cmath>
/** @mainpage Neural Network with Hidden Layers
@section neuro-intro Overview
@subsection nature Natural Neural Network
From <a href="https://en.wikipedia.org/wiki/Neuron">Wikipedia</a>:
«A neuron is an electrically excitable cell that processes and
transmits information through electrical and chemical
signals. These signals between neurons occur via synapses,
specialized connections with other cells. Neurons can connect to
each other to form neural networks. Neurons are the core
components of the brain and spinal cord of the central nervous
system, and of the ganglia of the peripheral nervous system.» The
neuron connects with dendrites to the world or to the axon of
other neuirons. The neurites (dendrite or axon) transport
electrical stimulation to the cell, which emits the signal to the
dendrites if the activation reaches a certain level.
@dot
digraph g {
rankdir=LR;
ranksep=0.8;
node [shape=hexagon];
edge [arrowhead=none];
subgraph clusterInput {
label="sensors";
color="white";
node [shape=point];
I0; I1; I2; I3; I4; I5; I6; I7; I8 I9;
}
subgraph clusterOutput {
label="actors";
color="white";
node [shape=point];
O0; O1; O2; O3; O4; O5; O6;
}
I1 -> Cell1 [label="axon";taillabel="synapse"];
{ I2; I3; I4; } -> Cell1;
{ I5; I6; I7; I8; } -> Cell2;
{ I4; I6; I9; I0; } -> Cell3;
Cell1 -> Cell8 [label="axon / dendrite"];
Cell1 -> { Cell2; Cell4; Cell5; }
Cell2 -> { Cell4; Cell5; Cell6; Cell8; }
Cell3 -> { Cell4; Cell6; Cell7; Cell8; }
{ Cell4; Cell5; Cell6 } -> { Cell7; Cell8; }
Cell7 -> { O0; O1; O2 };
Cell8 -> { O3; O4; O5; };
Cell8 -> O6 [label="dendrite"];
}
@enddot
@subsection art Artificial Neural Network
A complex neural network can be imitiated as a vector @c I of @c i
input values, a vector @c O of @c o output values and any number
@c l of hidden layers, where each of them contains @c h
neurons.
A neural network with double precision is initialized as:
@code
NeuroNet<double, i, o, l, h> net;
@endcode
@dot
digraph g {
rankdir=LR;
ranksep=1.5;
subgraph clusterInput {
label="Input Layer";
I1 [label=<I<SUB>1</SUB>>];
I2 [label=<I<SUB>2</SUB>>];
Ix [label=<I<SUB>…</SUB>>];
Ii [label=<I<SUB>i</SUB>>];
}
subgraph clusterHidden1 {
label="First Hidden Layer";
H11 [label=<H<SUB>11</SUB>>];
H12 [label=<H<SUB>12</SUB>>];
H1x [label=<H<SUB>1…</SUB>>];
H1h [label=<H<SUB>1h</SUB>>];
}
subgraph clusterHidden2 {
label="Second Hidden Layer";
H21 [label=<H<SUB>21</SUB>>];
H22 [label=<H<SUB>22</SUB>>];
H2x [label=<H<SUB>2…</SUB>>];
H2h [label=<H<SUB>2h</SUB>>];
}
subgraph clusterHiddenx {
label="More Hidden Layers";
Hx1 [label=<H<SUB>…1</SUB>>];
Hx2 [label=<H<SUB>…2</SUB>>];
Hxx [label=<H<SUB>……</SUB>>];
Hxh [label=<H<SUB>…h</SUB>>];
}
subgraph clusterHiddenl {
label="Last Hidden Layer";
Hl1 [label=<H<SUB>l1</SUB>>];
Hl2 [label=<H<SUB>l2</SUB>>];
Hlx [label=<H<SUB>l…</SUB>>];
Hlh [label=<H<SUB>lh</SUB>>];
}
subgraph clusterOutput {
label="Output Layer";
O1 [label=<O<SUB>1</SUB>>];
O2 [label=<O<SUB>2</SUB>>];
Ox [label=<O<SUB>…</SUB>>];
Oo [label=<O<SUB>o</SUB>>];
}
{ I1; I2; Ix; Ii; }
-> { H11; H12; H1x; H1h; }
-> { H21; H22; H2x; H2h; }
-> { Hx1; Hx2; Hxx; Hxh; }
-> { Hl1; Hl2; Hlx; Hlh; }
-> { O1; O2; Ox; Oo; }
}
@enddot
@section neuro-forward Forward Propagation
The connections between two layers can be modelled as a
Matrix. Then Matrix H<sub>1</sub> contains the weights from @c I
to the first hidden layer, @c H<sub>2</sub> from the first to the
second, and so on, until @c H<sub>l+1</sub> contains the weights
from layer @c l to the output @c O.
There is also an activation function @f. For back propagation,
this function needs a first derivation @c f'.
To get the activation of the first hidden layer, the input vector
is multiplied with the weight matrix of the first hidden layer,
this results in an output vector. Then the activation function is
applied to all values of the output vector:
<pre>
V<sub>1</sub> = f(I×H<sub>1</sub>)
</pre>
This is done for all layers, up to the output. The output vector
is then calculated as:
<pre>
O = f(f(f(f(I×H<sub>1</sub>)×H<sub>2</sub>)×H<sub>…</sub>)×H<sub>l+1</sub>)
</pre>
@code
const size_type i(4);
const size_type o(2);
NeuroNet<double, i, o> net;
Matrix<1, i> input(1.0, 2.0, 0.0, -1.0);
Matrix<1, o> output = feed(input);
@endcode
@section neuro-backward Back Propagation
@page biblio Bibliography
- <a href="http://briandolhansky.com/blog/2014/10/30/artificial-neural-networks-matrix-form-part-5">Artificial Neural Networks: Matrix Form (Part 5)</a>
- <a href="http://briandolhansky.com/blog/2013/9/27/artificial-neural-networks-backpropagation-part-4">Artificial Neural Networks: Mathematics of Backpropagation (Part 4)</a>
- <a href="http://www.tornau.name/wp-content/uploads/2009/04/studiumsmaterialien/neuronale_netze_zusammefassung.pdf">Vorlesung Neuronale Netze - Zusammenfassung - Christoph Tornau</a>
- <a href="http://www.neuronalesnetz.de/">Neuronale Netze — Eine Einführung</a>
- <a href="http://alphard.ethz.ch/hafner/Vorles/Optim/ANN/Artificial%20Neural%20Network%20based%20Curve%20Prediction%20Documentation.pdf">Artificial Neural Network based Curve Prediction</a>
- <a href="http://cs231n.github.io/convolutional-networks/">Convolutional Neural Networks (CNNs / ConvNets)</a>
- <a href="https://www.tensorflow.org/versions/r0.9/tutorials/index.html">TensorFlow Tutorials</a>
- <a href="http://alphard.ethz.ch/hafner/Vorles/Optim/ANN/Artificial%20Neural%20Network%20based%20Curve%20Prediction%20Documentation.pdf">Artificial Neural Network based Curve Prediction</a>
*/
namespace math {
// tangens hyperbolicus as standard activation function
template<typename TYPE> TYPE tanh(const TYPE& v) {
return ::tanh((long double)v);
}
// derivate of activation function for back propagation
template<typename TYPE> TYPE tanh_diff(const TYPE& v) {
TYPE ch(::cosh((long double)v));
return 1/(ch*ch);
}
}
template
<typename TYPE,
size_t INPUT_LAYERS,
size_t OUTPUT_LAYERS,
size_t HIDDEN_LAYERS = INPUT_LAYERS+OUTPUT_LAYERS,
size_t HIDDEN_LAYER_SIZE = INPUT_LAYERS+OUTPUT_LAYERS,
TYPE(*ACTIVATION)(const TYPE&) = math::tanh<TYPE>,
TYPE(*ACTIVATION_DIFF)(const TYPE&) = math::tanh_diff<TYPE>>
class NeuroNet {
public:
NeuroNet() {
}
Matrix<TYPE, 1, OUTPUT_LAYERS> operator()(const Matrix<TYPE, 1, INPUT_LAYERS>& in) {
Matrix<TYPE, 1, HIDDEN_LAYER_SIZE> l((in*_wi).apply(ACTIVATION));
for (int i(0); i<HIDDEN_LAYERS-1; ++i)
l = (l*_wh[i]).apply(ACTIVATION);
Matrix<TYPE, 1, OUTPUT_LAYERS> out((l*_wo).apply(ACTIVATION));
return out;
}
Matrix<TYPE, 1, OUTPUT_LAYERS> learn(const Matrix<TYPE, 1, INPUT_LAYERS>& in,
const Matrix<TYPE, 1, OUTPUT_LAYERS>& expect) {
Matrix<TYPE, 1, OUTPUT_LAYERS> out((*this)(in));
Matrix<TYPE, 1, OUTPUT_LAYERS> diff(expect-out);
return diff;
}
private:
Matrix<TYPE, INPUT_LAYERS, HIDDEN_LAYER_SIZE> _wi;
Matrix<TYPE, HIDDEN_LAYER_SIZE, HIDDEN_LAYER_SIZE> _wh[HIDDEN_LAYERS-1];
Matrix<TYPE, HIDDEN_LAYER_SIZE, OUTPUT_LAYERS> _wo;
};