#ifndef CRYPTOKI_HXX #define CRYPTOKI_HXX /*! @file @id $Id$ */ // 1 2 3 4 5 6 7 8 // 45678901234567890123456789012345678901234567890123456789012345678901234567890 // interface #include #ifndef WIN32 #include #else #include #endif #include #include #include #include #include #include // for inline implementations only #include #include #include // malloc/free #include // memset #include // assert #include /*! @defgroup gcryptoki C++ Wrapper around Cryptoki API Wrapper to abstract the ugly PKCS#11 C-API with nice C++ features, such as exception handling, memory management, etc. The cryptoky library loads a dynamic library that is responsible for translating the card specific commands. The library is passed in the constructor of cryptoki::Library. Then method cryptoki::Library::slotList returns all slots found on the computer. */ //@{ /*! @defgroup cryptokilib Cryptoki C++ Library */ /*! @defgroup cryptokitypes Cryptoki C++ Types and Auxiliary */ /*! @defgroup cryptokiexceptions Cryptoki Exceptions */ /** @example cryptoki-demo.cxx */ /** @example cryptoki-sign-demo.cxx */ //@} /// @addtogroup cryptokitypes //@{ #ifndef CRYPTOKI_FN_LOG #include #if __GNUC__ >= 2 //! Cryptoki Error Message Formatting /*! If you want to change cryptoki error formatting, just redefine your own CRYPTOKY_FN_LOG macro before \#include <cryptoki.hxx>. #return std::String */ #define CRYPTOKI_FN_LOG(X) (std::string(X " failed in ") \ +std::string(__PRETTY_FUNCTION__)) #else #define CRYPTOKI_QUOTE(X) CRYPTOKI_QUOTE2(X) #define CRYPTOKI_QUOTE2(X) #X //! Cryptoki Error Message Formatting /*! If you want to change cryptoki error formatting, just redefine your own CRYPTOKY_FN_LOG macro before \#include <cryptoki.hxx>. @return string */ #define CRYPTOKI_FN_LOG(X) X " failed in \ " __FILE__ ":" CRYPTOKI_QUOTE(__LINE__) #endif #endif //@} //! @ref gcryptoki @copydoc gcryptoki namespace cryptoki { //! @addtogroup cryptokitypes //@{ /// Map cryptoki number to a string, care about unavailable and infinite /** Cryptoky knows illegal values (unavailable information), which is mapped to @c - and infinite values which are mapped to @c ∞ when converted to string. All other numbers just show the number as numeric string. */ inline std::string string(CK_ULONG num) { switch (num) { case CK_UNAVAILABLE_INFORMATION: return "-"; case CK_EFFECTIVELY_INFINITE: return "∞"; default: { std::stringstream ss; ss< std::vector toVector(TYPE in[]) { return std::vector(in, in+sizeof(in)/sizeof(in[0])); } //@} //============================================================================ /*! @addtogroup cryptokiexceptions */ //@{ //---------------------------------------------------------------------------- class exception: public std::exception { public: exception(const std::string& reason) throw(): _what("cryptoki: "+reason) { CRYPTOLOG("ERROR: "< SlotList; class Object; typedef std::vector ObjectList; typedef std::vector AttributeTypeList; /// Represents a cryproki attribute and maps to C++ types. class Attribute { public: Attribute(CK_ATTRIBUTE_TYPE t = -1): type(t) {} Attribute(CK_ATTRIBUTE_TYPE t, const std::string& v): type(t), value(v) {} Attribute(CK_ATTRIBUTE& attr): type(attr.type), value((char*)attr.pValue, attr.ulValueLen) { free(attr.pValue); attr.pValue = 0; } Attribute& operator=(const std::string& v) { value = v; return *this; } bool operator==(const Attribute& o) const { return type==o.type && value==o.value; } bool operator!=(const Attribute& o) const { return type!=o.type || value!=o.value; } //! Convert to a @c CK_ATTRIBUTE. /*! @note @c pValue points to the internal buffer of this element and must therefore not be changed. Also this object must not be destructed before the returned @c CK_ATTRIBUTE. */ operator CK_ATTRIBUTE() const { CK_ATTRIBUTE a; a.type = type; a.pValue = const_cast(&value[0]); a.ulValueLen = value.size(); return a; } /// Textual name of the attribute. std::string name() const { switch (type) { case CKA_CLASS: return "CLASS"; case CKA_TOKEN: return "TOKEN"; case CKA_PRIVATE: return "PRIVATE"; case CKA_LABEL: return "LABEL"; case CKA_APPLICATION: return "APPLICATION"; case CKA_VALUE: return "VALUE"; case CKA_OBJECT_ID: return "OBJECT_ID"; case CKA_CERTIFICATE_TYPE: return "CERTIFICATE_TYPE"; case CKA_ISSUER: return "ISSUER"; case CKA_SERIAL_NUMBER: return "SERIAL_NUMBER"; case CKA_AC_ISSUER: return "AC_ISSUER"; case CKA_OWNER: return "OWNER"; case CKA_ATTR_TYPES: return "ATTR_TYPES"; case CKA_TRUSTED: return "TRUSTED"; case CKA_KEY_TYPE: return "KEY_TYPE"; case CKA_SUBJECT: return "SUBJECT"; case CKA_ID: return "ID"; case CKA_SENSITIVE: return "SENSITIVE"; case CKA_ENCRYPT: return "ENCRYPT"; case CKA_DECRYPT: return "DECRYPT"; case CKA_WRAP: return "WRAP"; case CKA_UNWRAP: return "UNWRAP"; case CKA_SIGN: return "SIGN"; case CKA_SIGN_RECOVER: return "SIGN_RECOVER"; case CKA_VERIFY: return "VERIFY"; case CKA_VERIFY_RECOVER: return "VERIFY_RECOVER"; case CKA_DERIVE: return "DERIVE"; case CKA_START_DATE: return "START_DATE"; case CKA_END_DATE: return "END_DATE"; case CKA_MODULUS: return "MODULUS"; case CKA_MODULUS_BITS: return "MODULUS_BITS"; case CKA_PUBLIC_EXPONENT: return "PUBLIC_EXPONENT"; case CKA_PRIVATE_EXPONENT: return "PRIVATE_EXPONENT"; case CKA_PRIME_1: return "PRIME_1"; case CKA_PRIME_2: return "PRIME_2"; case CKA_EXPONENT_1: return "EXPONENT_1"; case CKA_EXPONENT_2: return "EXPONENT_2"; case CKA_COEFFICIENT: return "COEFFICIENT"; case CKA_PRIME: return "PRIME"; case CKA_SUBPRIME: return "SUBPRIME"; case CKA_BASE: return "BASE"; case CKA_PRIME_BITS: return "PRIME_BITS"; //case CKA_SUBPRIME_BITS: return "SUBPRIME_BITS"; case CKA_VALUE_BITS: return "VALUE_BITS"; case CKA_VALUE_LEN: return "VALUE_LEN"; case CKA_EXTRACTABLE: return "EXTRACTABLE"; case CKA_LOCAL: return "LOCAL"; case CKA_NEVER_EXTRACTABLE: return "NEVER_EXTRACTABLE"; case CKA_ALWAYS_SENSITIVE: return "ALWAYS_SENSITIVE"; case CKA_KEY_GEN_MECHANISM: return "KEY_GEN_MECHANISM"; case CKA_MODIFIABLE: return "MODIFIABLE"; //case CKA_ECDSA_PARAMS: return "ECDSA_PARAMS"; case CKA_EC_PARAMS: return "ECDSA_PARAMS or EC_PARAMS"; case CKA_EC_POINT: return "EC_POINT"; case CKA_SECONDARY_AUTH: return "SECONDARY_AUTH"; case CKA_AUTH_PIN_FLAGS: return "AUTH_PIN_FLAGS"; case CKA_HW_FEATURE_TYPE: return "HW_FEATURE_TYPE"; case CKA_RESET_ON_INIT: return "RESET_ON_INIT"; case CKA_HAS_RESET: return "HAS_RESET"; case CKA_VENDOR_DEFINED: return "VENDOR_DEFINED"; //case CKA_IBM_OPAQUE: return "IBM_OPAQUE"; default: return "UNKNOWN"; } } /// Textual representation of the value. std::string readableValue(std::string::size_type len=20, std::string::size_type indent=0) const { std::string res(indent, ' '); switch (type) { case CKA_CLASS: switch (*((const CK_OBJECT_CLASS*)&value[0])) { case CKO_DATA: return res+"DATA"; case CKO_CERTIFICATE: return res+"CERTIFICATE"; case CKO_PUBLIC_KEY: return res+"PUBLIC_KEY"; case CKO_PRIVATE_KEY: return res+"PRIVATE_KEY"; case CKO_SECRET_KEY: return res+"SECRET_KEY"; case CKO_HW_FEATURE: return res+"HW_FEATURE"; case CKO_DOMAIN_PARAMETERS: return res+"DOMAIN_PARAMETERS"; case CKO_VENDOR_DEFINED: return res+"VENDOR_DEFINED"; default: return res+"UNKNOWN"; } default: return crypto::readable(value, len, indent); } } /// Initialize from a given type. /** To use this method, you must know what type the attribute represents. */ template Attribute& from(const TYPE& v) { value = std::string((const char*)&v, sizeof(TYPE)); return *this; } /// Convert to a given type. /** To use this method, you must know what type the attribute represents. */ template TYPE to() const { assert(sizeof(TYPE)==value.size()); return *reinterpret_cast(&value[0]); } CK_ATTRIBUTE_TYPE type; std::string value; }; typedef std::map AttributeMap; typedef std::vector AttributeList; /// String with fixed length. /** FixString represents a string with a fix with spaces and can be converted from and to a std::string by adding and removing the fill-spaces. */ template class FixString: public std::string { public: FixString() {} FixString(const char* const cStr) { *this = std::string(cStr, SIZE); size_type pos(find_last_not_of(" ")); if (pos!=npos) resize(pos+1); else resize(0); } FixString(const unsigned char* const cStr) { *this = std::string((const char*)cStr, SIZE); size_type pos(find_last_not_of(" ")); if (pos!=npos) resize(pos+1); else resize(0); } FixString& operator=(const std::string& other) { std::string::operator=(other); return *this; } FixString& operator=(const char* const cStr) { *this = std::string(cStr, SIZE); size_type pos(find_last_not_of(" ")); if (pos!=npos) resize(pos+1); else resize(0); return *this; } FixString& operator=(const unsigned char* const cStr) { *this = std::string((const char*)cStr, SIZE); size_type pos(find_last_not_of(" ")); if (pos!=npos) resize(pos+1); else resize(0); return *this; } operator unsigned char*() { return (unsigned char*)begin().operator->(); } FixString fix() { FixString cpy(*this); cpy.resize(SIZE, ' '); return cpy; } }; /// C++ representation of mechanism information. struct MechanismInfo { CK_MECHANISM_TYPE id; std::string name; CK_ULONG minKeySize; CK_ULONG maxKeySize; CK_FLAGS flags; /// Construct from type with undefined infos. Use assigment later. MechanismInfo(CK_MECHANISM_TYPE type): minKeySize(0), maxKeySize(0), flags(0) { *this=type; } /// Fully construct from type and infos. MechanismInfo(CK_MECHANISM_TYPE type, const CK_MECHANISM_INFO& info) { *this=type; *this=info; } /// Set name and id from CK_MECHANISM_TYPE. MechanismInfo& operator=(CK_MECHANISM_TYPE type) { id=type; switch (id) { #ifdef CKM_RSA_PKCS_KEY_PAIR_GEN case CKM_RSA_PKCS_KEY_PAIR_GEN: name="RSA_PKCS_KEY_PAIR_GEN"; break; #endif #ifdef CKM_RSA_PKCS case CKM_RSA_PKCS: name="RSA_PKCS"; break; #endif #ifdef CKM_RSA_9796 case CKM_RSA_9796: name="RSA_9796"; break; #endif #ifdef CKM_RSA_X_509 case CKM_RSA_X_509: name="RSA_X_509"; break; #endif #ifdef CKM_MD2_RSA_PKCS case CKM_MD2_RSA_PKCS: name="MD2_RSA_PKCS"; break; #endif #ifdef CKM_MD5_RSA_PKCS case CKM_MD5_RSA_PKCS: name="MD5_RSA_PKCS"; break; #endif #ifdef CKM_SHA1_RSA_PKCS case CKM_SHA1_RSA_PKCS: name="SHA1_RSA_PKCS"; break; #endif #ifdef CKM_RIPEMD128_RSA_PKCS case CKM_RIPEMD128_RSA_PKCS: name="RIPEMD128_RSA_PKCS"; break; #endif #ifdef CKM_RIPEMD160_RSA_PKCS case CKM_RIPEMD160_RSA_PKCS: name="RIPEMD160_RSA_PKCS"; break; #endif #ifdef CKM_RSA_PKCS_OAEP case CKM_RSA_PKCS_OAEP: name="RSA_PKCS_OAEP"; break; #endif #ifdef CKM_RSA_X9_31_KEY_PAIR_GEN case CKM_RSA_X9_31_KEY_PAIR_GEN: name="RSA_X9_31_KEY_PAIR_GEN"; break; #endif #ifdef CKM_RSA_X9_31 case CKM_RSA_X9_31: name="RSA_X9_31"; break; #endif #ifdef CKM_SHA1_RSA_X9_31 case CKM_SHA1_RSA_X9_31: name="SHA1_RSA_X9_31"; break; #endif #ifdef CKM_RSA_PKCS_PSS case CKM_RSA_PKCS_PSS: name="RSA_PKCS_PSS"; break; #endif #ifdef CKM_SHA1_RSA_PKCS_PSS case CKM_SHA1_RSA_PKCS_PSS: name="SHA1_RSA_PKCS_PSS"; break; #endif #ifdef CKM_DSA_KEY_PAIR_GEN case CKM_DSA_KEY_PAIR_GEN: name="DSA_KEY_PAIR_GEN"; break; #endif #ifdef CKM_DSA case CKM_DSA: name="DSA"; break; #endif #ifdef CKM_DSA_SHA1 case CKM_DSA_SHA1: name="DSA_SHA1"; break; #endif #ifdef CKM_DH_PKCS_KEY_PAIR_GEN case CKM_DH_PKCS_KEY_PAIR_GEN: name="DH_PKCS_KEY_PAIR_GEN"; break; #endif #ifdef CKM_DH_PKCS_DERIVE case CKM_DH_PKCS_DERIVE: name="DH_PKCS_DERIVE"; break; #endif #ifdef CKM_X9_42_DH_KEY_PAIR_GEN case CKM_X9_42_DH_KEY_PAIR_GEN: name="X9_42_DH_KEY_PAIR_GEN"; break; #endif #ifdef CKM_X9_42_DH_DERIVE case CKM_X9_42_DH_DERIVE: name="X9_42_DH_DERIVE"; break; #endif #ifdef CKM_X9_42_DH_HYBRID_DERIVE case CKM_X9_42_DH_HYBRID_DERIVE: name="X9_42_DH_HYBRID_DERIVE"; break; #endif #ifdef CKM_X9_42_MQV_DERIVE case CKM_X9_42_MQV_DERIVE: name="X9_42_MQV_DERIVE"; break; #endif #ifdef CKM_SHA256_RSA_PKCS case CKM_SHA256_RSA_PKCS: name="SHA256_RSA_PKCS"; break; #endif #ifdef CKM_RC2_KEY_GEN case CKM_RC2_KEY_GEN: name="RC2_KEY_GEN"; break; #endif #ifdef CKM_RC2_ECB case CKM_RC2_ECB: name="RC2_ECB"; break; #endif #ifdef CKM_RC2_CBC case CKM_RC2_CBC: name="RC2_CBC"; break; #endif #ifdef CKM_RC2_MAC case CKM_RC2_MAC: name="RC2_MAC"; break; #endif #ifdef CKM_RC2_MAC_GENERAL case CKM_RC2_MAC_GENERAL: name="RC2_MAC_GENERAL"; break; #endif #ifdef CKM_RC2_CBC_PAD case CKM_RC2_CBC_PAD: name="RC2_CBC_PAD"; break; #endif #ifdef CKM_RC4_KEY_GEN case CKM_RC4_KEY_GEN: name="RC4_KEY_GEN"; break; #endif #ifdef CKM_RC4 case CKM_RC4: name="RC4"; break; #endif #ifdef CKM_DES_KEY_GEN case CKM_DES_KEY_GEN: name="DES_KEY_GEN"; break; #endif #ifdef CKM_DES_ECB case CKM_DES_ECB: name="DES_ECB"; break; #endif #ifdef CKM_DES_CBC case CKM_DES_CBC: name="DES_CBC"; break; #endif #ifdef CKM_DES_MAC case CKM_DES_MAC: name="DES_MAC"; break; #endif #ifdef CKM_DES_MAC_GENERAL case CKM_DES_MAC_GENERAL: name="DES_MAC_GENERAL"; break; #endif #ifdef CKM_DES_CBC_PAD case CKM_DES_CBC_PAD: name="DES_CBC_PAD"; break; #endif #ifdef CKM_DES2_KEY_GEN case CKM_DES2_KEY_GEN: name="DES2_KEY_GEN"; break; #endif #ifdef CKM_DES3_KEY_GEN case CKM_DES3_KEY_GEN: name="DES3_KEY_GEN"; break; #endif #ifdef CKM_DES3_ECB case CKM_DES3_ECB: name="DES3_ECB"; break; #endif #ifdef CKM_DES3_CBC case CKM_DES3_CBC: name="DES3_CBC"; break; #endif #ifdef CKM_DES3_MAC case CKM_DES3_MAC: name="DES3_MAC"; break; #endif #ifdef CKM_DES3_MAC_GENERAL case CKM_DES3_MAC_GENERAL: name="DES3_MAC_GENERAL"; break; #endif #ifdef CKM_DES3_CBC_PAD case CKM_DES3_CBC_PAD: name="DES3_CBC_PAD"; break; #endif #ifdef CKM_CDMF_KEY_GEN case CKM_CDMF_KEY_GEN: name="CDMF_KEY_GEN"; break; #endif #ifdef CKM_CDMF_ECB case CKM_CDMF_ECB: name="CDMF_ECB"; break; #endif #ifdef CKM_CDMF_CBC case CKM_CDMF_CBC: name="CDMF_CBC"; break; #endif #ifdef CKM_CDMF_MAC case CKM_CDMF_MAC: name="CDMF_MAC"; break; #endif #ifdef CKM_CDMF_MAC_GENERAL case CKM_CDMF_MAC_GENERAL: name="CDMF_MAC_GENERAL"; break; #endif #ifdef CKM_CDMF_CBC_PAD case CKM_CDMF_CBC_PAD: name="CDMF_CBC_PAD"; break; #endif #ifdef CKM_MD2 case CKM_MD2: name="MD2"; break; #endif #ifdef CKM_MD2_HMAC case CKM_MD2_HMAC: name="MD2_HMAC"; break; #endif #ifdef CKM_MD2_HMAC_GENERAL case CKM_MD2_HMAC_GENERAL: name="MD2_HMAC_GENERAL"; break; #endif #ifdef CKM_MD5 case CKM_MD5: name="MD5"; break; #endif #ifdef CKM_MD5_HMAC case CKM_MD5_HMAC: name="MD5_HMAC"; break; #endif #ifdef CKM_MD5_HMAC_GENERAL case CKM_MD5_HMAC_GENERAL: name="MD5_HMAC_GENERAL"; break; #endif #ifdef CKM_SHA_1 case CKM_SHA_1: name="SHA_1"; break; #endif #ifdef CKM_SHA_1_HMAC case CKM_SHA_1_HMAC: name="SHA_1_HMAC"; break; #endif #ifdef CKM_SHA_1_HMAC_GENERAL case CKM_SHA_1_HMAC_GENERAL: name="SHA_1_HMAC_GENERAL"; break; #endif #ifdef CKM_RIPEMD128 case CKM_RIPEMD128: name="RIPEMD128"; break; #endif #ifdef CKM_RIPEMD128_HMAC case CKM_RIPEMD128_HMAC: name="RIPEMD128_HMAC"; break; #endif #ifdef CKM_RIPEMD128_HMAC_GENERAL case CKM_RIPEMD128_HMAC_GENERAL: name="RIPEMD128_HMAC_GENERAL"; break; #endif #ifdef CKM_RIPEMD160 case CKM_RIPEMD160: name="RIPEMD160"; break; #endif #ifdef CKM_RIPEMD160_HMAC case CKM_RIPEMD160_HMAC: name="RIPEMD160_HMAC"; break; #endif #ifdef CKM_RIPEMD160_HMAC_GENERAL case CKM_RIPEMD160_HMAC_GENERAL: name="RIPEMD160_HMAC_GENERAL"; break; #endif #ifdef CKM_SHA256 case CKM_SHA256: name="SHA256"; break; #endif #ifdef CKM_SHA256_HMAC case CKM_SHA256_HMAC: name="SHA256_HMAC"; break; #endif #ifdef CKM_SHA256_HMAC_GENERAL case CKM_SHA256_HMAC_GENERAL: name="SHA256_HMAC_GENERAL"; break; #endif #ifdef CKM_SHA384 case CKM_SHA384: name="SHA384"; break; #endif #ifdef CKM_SHA384_HMAC case CKM_SHA384_HMAC: name="SHA384_HMAC"; break; #endif #ifdef CKM_SHA384_HMAC_GENERAL case CKM_SHA384_HMAC_GENERAL: name="SHA384_HMAC_GENERAL"; break; #endif #ifdef CKM_SHA512 case CKM_SHA512: name="SHA512"; break; #endif #ifdef CKM_SHA512_HMAC case CKM_SHA512_HMAC: name="SHA512_HMAC"; break; #endif #ifdef CKM_SHA512_HMAC_GENERAL case CKM_SHA512_HMAC_GENERAL: name="SHA512_HMAC_GENERAL"; break; #endif #ifdef CKM_CAST_KEY_GEN case CKM_CAST_KEY_GEN: name="CAST_KEY_GEN"; break; #endif #ifdef CKM_CAST_ECB case CKM_CAST_ECB: name="CAST_ECB"; break; #endif #ifdef CKM_CAST_CBC case CKM_CAST_CBC: name="CAST_CBC"; break; #endif #ifdef CKM_CAST_MAC case CKM_CAST_MAC: name="CAST_MAC"; break; #endif #ifdef CKM_CAST_MAC_GENERAL case CKM_CAST_MAC_GENERAL: name="CAST_MAC_GENERAL"; break; #endif #ifdef CKM_CAST_CBC_PAD case CKM_CAST_CBC_PAD: name="CAST_CBC_PAD"; break; #endif #ifdef CKM_CAST3_KEY_GEN case CKM_CAST3_KEY_GEN: name="CAST3_KEY_GEN"; break; #endif #ifdef CKM_CAST3_ECB case CKM_CAST3_ECB: name="CAST3_ECB"; break; #endif #ifdef CKM_CAST3_CBC case CKM_CAST3_CBC: name="CAST3_CBC"; break; #endif #ifdef CKM_CAST3_MAC case CKM_CAST3_MAC: name="CAST3_MAC"; break; #endif #ifdef CKM_CAST3_MAC_GENERAL case CKM_CAST3_MAC_GENERAL: name="CAST3_MAC_GENERAL"; break; #endif #ifdef CKM_CAST3_CBC_PAD case CKM_CAST3_CBC_PAD: name="CAST3_CBC_PAD"; break; #endif #ifdef CKM_CAST5_KEY_GEN case CKM_CAST5_KEY_GEN: name="CAST5_KEY_GEN"; break; #endif #ifdef CKM_CAST128_KEY_GEN //case CKM_CAST128_KEY_GEN: name="CAST5_KEY_GEN or //CAST128_KEY_GEN"; break; #endif #ifdef CKM_CAST5_ECB case CKM_CAST5_ECB: name="CAST5_ECB"; break; #endif #ifdef CKM_CAST128_ECB //case CKM_CAST128_ECB: name="CAST5_ECB or CAST128_ECB"; break; #endif #ifdef CKM_CAST5_CBC case CKM_CAST5_CBC: name="CAST5_CBC"; break; #endif #ifdef CKM_CAST128_CBC //case CKM_CAST128_CBC: name="CAST5_CBC or CAST128_CBC"; break; #endif #ifdef CKM_CAST5_MAC case CKM_CAST5_MAC: name="CAST5_MAC"; break; #endif #ifdef CKM_CAST128_MAC //case CKM_CAST128_MAC: name="CAST5_MAC or CAST128_MAC"; break; #endif #ifdef CKM_CAST5_MAC_GENERAL case CKM_CAST5_MAC_GENERAL: name="CAST5_MAC_GENERAL"; break; #endif #ifdef CKM_CAST128_MAC_GENERAL //case CKM_CAST128_MAC_GENERAL: name="CAST5_MAC_GENERAL or //CAST128_MAC_GENERAL"; break; #endif #ifdef CKM_CAST5_CBC_PAD case CKM_CAST5_CBC_PAD: name="CAST5_CBC_PAD"; break; #endif #ifdef CKM_CAST128_CBC_PAD //case CKM_CAST128_CBC_PAD: name="CAST5_CBC_PAD or //CAST128_CBC_PAD"; break; #endif #ifdef CKM_RC5_KEY_GEN case CKM_RC5_KEY_GEN: name="RC5_KEY_GEN"; break; #endif #ifdef CKM_RC5_ECB case CKM_RC5_ECB: name="RC5_ECB"; break; #endif #ifdef CKM_RC5_CBC case CKM_RC5_CBC: name="RC5_CBC"; break; #endif #ifdef CKM_RC5_MAC case CKM_RC5_MAC: name="RC5_MAC"; break; #endif #ifdef CKM_RC5_MAC_GENERAL case CKM_RC5_MAC_GENERAL: name="RC5_MAC_GENERAL"; break; #endif #ifdef CKM_RC5_CBC_PAD case CKM_RC5_CBC_PAD: name="RC5_CBC_PAD"; break; #endif #ifdef CKM_IDEA_KEY_GEN case CKM_IDEA_KEY_GEN: name="IDEA_KEY_GEN"; break; #endif #ifdef CKM_IDEA_ECB case CKM_IDEA_ECB: name="IDEA_ECB"; break; #endif #ifdef CKM_IDEA_CBC case CKM_IDEA_CBC: name="IDEA_CBC"; break; #endif #ifdef CKM_IDEA_MAC case CKM_IDEA_MAC: name="IDEA_MAC"; break; #endif #ifdef CKM_IDEA_MAC_GENERAL case CKM_IDEA_MAC_GENERAL: name="IDEA_MAC_GENERAL"; break; #endif #ifdef CKM_IDEA_CBC_PAD case CKM_IDEA_CBC_PAD: name="IDEA_CBC_PAD"; break; #endif #ifdef CKM_GENERIC_SECRET_KEY_GEN case CKM_GENERIC_SECRET_KEY_GEN: name="GENERIC_SECRET_KEY_GEN"; break; #endif #ifdef CKM_CONCATENATE_BASE_AND_KEY case CKM_CONCATENATE_BASE_AND_KEY: name="CONCATENATE_BASE_AND_KEY"; break; #endif #ifdef CKM_CONCATENATE_BASE_AND_DATA case CKM_CONCATENATE_BASE_AND_DATA: name="CONCATENATE_BASE_AND_DATA"; break; #endif #ifdef CKM_CONCATENATE_DATA_AND_BASE case CKM_CONCATENATE_DATA_AND_BASE: name="CONCATENATE_DATA_AND_BASE"; break; #endif #ifdef CKM_XOR_BASE_AND_DATA case CKM_XOR_BASE_AND_DATA: name="XOR_BASE_AND_DATA"; break; #endif #ifdef CKM_EXTRACT_KEY_FROM_KEY case CKM_EXTRACT_KEY_FROM_KEY: name="EXTRACT_KEY_FROM_KEY"; break; #endif #ifdef CKM_SSL3_PRE_MASTER_KEY_GEN case CKM_SSL3_PRE_MASTER_KEY_GEN: name="SSL3_PRE_MASTER_KEY_GEN"; break; #endif #ifdef CKM_SSL3_MASTER_KEY_DERIVE case CKM_SSL3_MASTER_KEY_DERIVE: name="SSL3_MASTER_KEY_DERIVE"; break; #endif #ifdef CKM_SSL3_KEY_AND_MAC_DERIVE case CKM_SSL3_KEY_AND_MAC_DERIVE: name="SSL3_KEY_AND_MAC_DERIVE"; break; #endif #ifdef CKM_SSL3_MASTER_KEY_DERIVE_DH case CKM_SSL3_MASTER_KEY_DERIVE_DH: name="SSL3_MASTER_KEY_DERIVE_DH"; break; #endif #ifdef CKM_TLS_PRE_MASTER_KEY_GEN case CKM_TLS_PRE_MASTER_KEY_GEN: name="TLS_PRE_MASTER_KEY_GEN"; break; #endif #ifdef CKM_TLS_MASTER_KEY_DERIVE case CKM_TLS_MASTER_KEY_DERIVE: name="TLS_MASTER_KEY_DERIVE"; break; #endif #ifdef CKM_TLS_KEY_AND_MAC_DERIVE case CKM_TLS_KEY_AND_MAC_DERIVE: name="TLS_KEY_AND_MAC_DERIVE"; break; #endif #ifdef CKM_TLS_MASTER_KEY_DERIVE_DH case CKM_TLS_MASTER_KEY_DERIVE_DH: name="TLS_MASTER_KEY_DERIVE_DH"; break; #endif #ifdef CKM_SSL3_MD5_MAC case CKM_SSL3_MD5_MAC: name="SSL3_MD5_MAC"; break; #endif #ifdef CKM_SSL3_SHA1_MAC case CKM_SSL3_SHA1_MAC: name="SSL3_SHA1_MAC"; break; #endif #ifdef CKM_MD5_KEY_DERIVATION case CKM_MD5_KEY_DERIVATION: name="MD5_KEY_DERIVATION"; break; #endif #ifdef CKM_MD2_KEY_DERIVATION case CKM_MD2_KEY_DERIVATION: name="MD2_KEY_DERIVATION"; break; #endif #ifdef CKM_SHA1_KEY_DERIVATION case CKM_SHA1_KEY_DERIVATION: name="SHA1_KEY_DERIVATION"; break; #endif #ifdef CKM_SHA256_KEY_DERIVATION case CKM_SHA256_KEY_DERIVATION: name="SHA256_KEY_DERIVATION"; break; #endif #ifdef CKM_PBE_MD2_DES_CBC case CKM_PBE_MD2_DES_CBC: name="PBE_MD2_DES_CBC"; break; #endif #ifdef CKM_PBE_MD5_DES_CBC case CKM_PBE_MD5_DES_CBC: name="PBE_MD5_DES_CBC"; break; #endif #ifdef CKM_PBE_MD5_CAST_CBC case CKM_PBE_MD5_CAST_CBC: name="PBE_MD5_CAST_CBC"; break; #endif #ifdef CKM_PBE_MD5_CAST3_CBC case CKM_PBE_MD5_CAST3_CBC: name="PBE_MD5_CAST3_CBC"; break; #endif #ifdef CKM_PBE_MD5_CAST5_CBC case CKM_PBE_MD5_CAST5_CBC: name="PBE_MD5_CAST5_CBC"; break; #endif #ifdef CKM_PBE_MD5_CAST128_CBC //case CKM_PBE_MD5_CAST128_CBC: name="PBE_MD5_CAST5_CBC or //PBE_MD5_CAST128_CBC"; break; #endif #ifdef CKM_PBE_SHA1_CAST5_CBC case CKM_PBE_SHA1_CAST5_CBC: name="PBE_SHA1_CAST5_CBC"; break; #endif #ifdef CKM_PBE_SHA1_CAST128_CBC //case CKM_PBE_SHA1_CAST128_CBC: name="PBE_SHA1_CAST5_CBC or //PBE_SHA1_CAST128_CBC"; break; #endif #ifdef CKM_PBE_SHA1_RC4_128 case CKM_PBE_SHA1_RC4_128: name="PBE_SHA1_RC4_128"; break; #endif #ifdef CKM_PBE_SHA1_RC4_40 case CKM_PBE_SHA1_RC4_40: name="PBE_SHA1_RC4_40"; break; #endif #ifdef CKM_PBE_SHA1_DES3_EDE_CBC case CKM_PBE_SHA1_DES3_EDE_CBC: name="PBE_SHA1_DES3_EDE_CBC"; break; #endif #ifdef CKM_PBE_SHA1_DES2_EDE_CBC case CKM_PBE_SHA1_DES2_EDE_CBC: name="PBE_SHA1_DES2_EDE_CBC"; break; #endif #ifdef CKM_PBE_SHA1_RC2_128_CBC case CKM_PBE_SHA1_RC2_128_CBC: name="PBE_SHA1_RC2_128_CBC"; break; #endif #ifdef CKM_PBE_SHA1_RC2_40_CBC case CKM_PBE_SHA1_RC2_40_CBC: name="PBE_SHA1_RC2_40_CBC"; break; #endif #ifdef CKM_PKCS5_PBKD2 case CKM_PKCS5_PBKD2: name="PKCS5_PBKD2"; break; #endif #ifdef CKM_PBA_SHA1_WITH_SHA1_HMAC case CKM_PBA_SHA1_WITH_SHA1_HMAC: name="PBA_SHA1_WITH_SHA1_HMAC"; break; #endif #ifdef CKM_KEY_WRAP_LYNKS case CKM_KEY_WRAP_LYNKS: name="KEY_WRAP_LYNKS"; break; #endif #ifdef CKM_KEY_WRAP_SET_OAEP case CKM_KEY_WRAP_SET_OAEP: name="KEY_WRAP_SET_OAEP"; break; #endif #ifdef CKM_SKIPJACK_KEY_GEN case CKM_SKIPJACK_KEY_GEN: name="SKIPJACK_KEY_GEN"; break; #endif #ifdef CKM_SKIPJACK_ECB64 case CKM_SKIPJACK_ECB64: name="SKIPJACK_ECB64"; break; #endif #ifdef CKM_SKIPJACK_CBC64 case CKM_SKIPJACK_CBC64: name="SKIPJACK_CBC64"; break; #endif #ifdef CKM_SKIPJACK_OFB64 case CKM_SKIPJACK_OFB64: name="SKIPJACK_OFB64"; break; #endif #ifdef CKM_SKIPJACK_CFB64 case CKM_SKIPJACK_CFB64: name="SKIPJACK_CFB64"; break; #endif #ifdef CKM_SKIPJACK_CFB32 case CKM_SKIPJACK_CFB32: name="SKIPJACK_CFB32"; break; #endif #ifdef CKM_SKIPJACK_CFB16 case CKM_SKIPJACK_CFB16: name="SKIPJACK_CFB16"; break; #endif #ifdef CKM_SKIPJACK_CFB8 case CKM_SKIPJACK_CFB8: name="SKIPJACK_CFB8"; break; #endif #ifdef CKM_SKIPJACK_WRAP case CKM_SKIPJACK_WRAP: name="SKIPJACK_WRAP"; break; #endif #ifdef CKM_SKIPJACK_PRIVATE_WRAP case CKM_SKIPJACK_PRIVATE_WRAP: name="SKIPJACK_PRIVATE_WRAP"; break; #endif #ifdef CKM_SKIPJACK_RELAYX case CKM_SKIPJACK_RELAYX: name="SKIPJACK_RELAYX"; break; #endif #ifdef CKM_KEA_KEY_PAIR_GEN case CKM_KEA_KEY_PAIR_GEN: name="KEA_KEY_PAIR_GEN"; break; #endif #ifdef CKM_KEA_KEY_DERIVE case CKM_KEA_KEY_DERIVE: name="KEA_KEY_DERIVE"; break; #endif #ifdef CKM_FORTEZZA_TIMESTAMP case CKM_FORTEZZA_TIMESTAMP: name="FORTEZZA_TIMESTAMP"; break; #endif #ifdef CKM_BATON_KEY_GEN case CKM_BATON_KEY_GEN: name="BATON_KEY_GEN"; break; #endif #ifdef CKM_BATON_ECB128 case CKM_BATON_ECB128: name="BATON_ECB128"; break; #endif #ifdef CKM_BATON_ECB96 case CKM_BATON_ECB96: name="BATON_ECB96"; break; #endif #ifdef CKM_BATON_CBC128 case CKM_BATON_CBC128: name="BATON_CBC128"; break; #endif #ifdef CKM_BATON_COUNTER case CKM_BATON_COUNTER: name="BATON_COUNTER"; break; #endif #ifdef CKM_BATON_SHUFFLE case CKM_BATON_SHUFFLE: name="BATON_SHUFFLE"; break; #endif #ifdef CKM_BATON_WRAP case CKM_BATON_WRAP: name="BATON_WRAP"; break; #endif #ifdef CKM_ECDSA_KEY_PAIR_GEN case CKM_ECDSA_KEY_PAIR_GEN: name="ECDSA_KEY_PAIR_GEN"; break; #endif #ifdef CKM_EC_KEY_PAIR_GEN //case CKM_EC_KEY_PAIR_GEN: name="ECDSA_KEY_PAIR_GEN or //EC_KEY_PAIR_GEN"; break; #endif #ifdef CKM_ECDSA case CKM_ECDSA: name="ECDSA"; break; #endif #ifdef CKM_ECDSA_SHA1 case CKM_ECDSA_SHA1: name="ECDSA_SHA1"; break; #endif #ifdef CKM_ECDH1_DERIVE case CKM_ECDH1_DERIVE: name="ECDH1_DERIVE"; break; #endif #ifdef CKM_ECDH1_COFACTOR_DERIVE case CKM_ECDH1_COFACTOR_DERIVE: name="ECDH1_COFACTOR_DERIVE"; break; #endif #ifdef CKM_ECMQV_DERIVE case CKM_ECMQV_DERIVE: name="ECMQV_DERIVE"; break; #endif #ifdef CKM_JUNIPER_KEY_GEN case CKM_JUNIPER_KEY_GEN: name="JUNIPER_KEY_GEN"; break; #endif #ifdef CKM_JUNIPER_ECB128 case CKM_JUNIPER_ECB128: name="JUNIPER_ECB128"; break; #endif #ifdef CKM_JUNIPER_CBC128 case CKM_JUNIPER_CBC128: name="JUNIPER_CBC128"; break; #endif #ifdef CKM_JUNIPER_COUNTER case CKM_JUNIPER_COUNTER: name="JUNIPER_COUNTER"; break; #endif #ifdef CKM_JUNIPER_SHUFFLE case CKM_JUNIPER_SHUFFLE: name="JUNIPER_SHUFFLE"; break; #endif #ifdef CKM_JUNIPER_WRAP case CKM_JUNIPER_WRAP: name="JUNIPER_WRAP"; break; #endif #ifdef CKM_FASTHASH case CKM_FASTHASH: name="FASTHASH"; break; #endif #ifdef CKM_AES_KEY_GEN case CKM_AES_KEY_GEN: name="AES_KEY_GEN"; break; #endif #ifdef CKM_AES_ECB case CKM_AES_ECB: name="AES_ECB"; break; #endif #ifdef CKM_AES_CBC case CKM_AES_CBC: name="AES_CBC"; break; #endif #ifdef CKM_AES_MAC case CKM_AES_MAC: name="AES_MAC"; break; #endif #ifdef CKM_AES_MAC_GENERAL case CKM_AES_MAC_GENERAL: name="AES_MAC_GENERAL"; break; #endif #ifdef CKM_AES_CBC_PAD case CKM_AES_CBC_PAD: name="AES_CBC_PAD"; break; #endif #ifdef CKM_DSA_PARAMETER_GEN case CKM_DSA_PARAMETER_GEN: name="DSA_PARAMETER_GEN"; break; #endif #ifdef CKM_DH_PKCS_PARAMETER_GEN case CKM_DH_PKCS_PARAMETER_GEN: name="DH_PKCS_PARAMETER_GEN"; break; #endif #ifdef CKM_X9_42_DH_PARAMETER_GEN case CKM_X9_42_DH_PARAMETER_GEN: name="X9_42_DH_PARAMETER_GEN"; break; #endif #ifdef CKM_VENDOR_DEFINED case CKM_VENDOR_DEFINED: name="VENDOR_DEFINED"; break; #endif default: { std::stringstream ss; ss< MechanismList; /// Handle slot information. struct SlotInfo { FixString<64> slotDescription; FixString<32> manufacturerID; CK_FLAGS flags; CK_VERSION hardwareVersion; CK_VERSION firmwareVersion; SlotInfo() { } //! Convert C-Structure of Slot Information Into C++ SlotInfo(const CK_SLOT_INFO& cInfo): slotDescription(cInfo.slotDescription), manufacturerID(cInfo.manufacturerID), flags(cInfo.flags), hardwareVersion(cInfo.hardwareVersion), firmwareVersion(cInfo.firmwareVersion) { } }; struct TokenInfo; // forward declaration inline std::ostream& operator<<(std::ostream& out, const TokenInfo& ti); /// Handle token information. struct TokenInfo { FixString<32> label; FixString<32> manufacturerID; FixString<16> model; FixString<16> serialNumber; CK_FLAGS flags; CK_ULONG maxSessionCount; CK_ULONG sessionCount; CK_ULONG maxRwSessionCount; CK_ULONG rwSessionCount; CK_ULONG maxPinLen; CK_ULONG minPinLen; CK_ULONG totalPublicMemory; CK_ULONG freePublicMemory; CK_ULONG totalPrivateMemory; CK_ULONG freePrivateMemory; CK_VERSION hardwareVersion; CK_VERSION firmwareVersion; FixString<16> utcTime; TokenInfo() { CRYPTOLOG("log"); } //! Convert C-Structure of Token Information Into C++ TokenInfo(const CK_TOKEN_INFO& cInfo): label(cInfo.label), manufacturerID(cInfo.manufacturerID), model(cInfo.model), serialNumber(cInfo.serialNumber), flags(cInfo.flags), maxSessionCount(cInfo.ulMaxSessionCount), sessionCount(cInfo.ulSessionCount), maxRwSessionCount(cInfo.ulMaxRwSessionCount), rwSessionCount(cInfo.ulRwSessionCount), maxPinLen(cInfo.ulMaxPinLen), minPinLen(cInfo.ulMinPinLen), totalPublicMemory(cInfo.ulTotalPublicMemory), freePublicMemory(cInfo.ulFreePublicMemory), totalPrivateMemory(cInfo.ulTotalPrivateMemory), freePrivateMemory(cInfo.ulFreePrivateMemory), hardwareVersion(cInfo.hardwareVersion), firmwareVersion(cInfo.firmwareVersion), utcTime(cInfo.utcTime) { CRYPTOLOG("log *this={"<<*this<<'}'); } }; /// Textual representation for token information. inline std::ostream& operator<<(std::ostream& out, const TokenInfo& ti) { return out <<"label="<C_Finalize(0), CRYPTOKI_FN_LOG("C_Finalize")); check(_fn->C_Initialize(0), CRYPTOKI_FN_LOG("C_Initialize")); return *this; } CK_FUNCTION_LIST* fn() { return _fn; } /*! @name C Like Error Handling You are strongly recommended not to disable exception handling. If you disable it, you must check after every operation whether it was successful or not. These methods provide all you need for that. */ //@{ /*! @return @c true if last cryptoki on this object call was successful */ operator bool(); /*! @return error text of last cryptoki call */ std::string error(); //@} }; public: /// Get pointer to cryptoki API functions. /** Used internally, normally you shouldn't use this directly. */ CK_FUNCTION_LIST* operator->() { return _init->fn(); } /*! @name C Like Error Handling You are strongly recommended not to disable exception handling. If you disable it, you must check after every operation whether it was successful or not. These methods provide all you need for that. */ //@{ /// @return true if exceptions are thrown in case of error bool exc() { return _init->_exc; } /*! @return @c true if last cryptoki on this object call was successful */ operator bool() { return *_init; } /*! @return error text of last cryptoki call */ std::string error() { return _init->error(); } /// Convert @c CK_RV return code to a human readable text. std::string error(CK_RV res) { return _init->error(res); } //@} /// Get cryptoki library informartion. Info info() { CRYPTOLOG("log"); Info inf; CK_INFO cInf; //! calls @c C_GetInfo if (!_init->check(_init->fn() ->C_GetInfo(&cInf), CRYPTOKI_FN_LOG("C_GetInfo"))) return inf; inf.cryptokiVersion = cInf.cryptokiVersion; inf.manufacturerID = cInf.manufacturerID; inf.flags = cInf.flags; inf.libraryDescription = cInf.libraryDescription; inf.libraryVersion = cInf.libraryVersion; return inf; } //! Get a list of available slots /*! @param tokenPresent whether a token must be inserted into the reader @param name if given, only return slots with a given name @return list of matching slots */ SlotList slotList(bool tokenPresent=true, std::string name=std::string()); private: std::shared_ptr _init; }; //! Slot and Token Management class Slot { private: friend class Library; friend class Session; friend class Object; Library _library; CK_SLOT_ID _slot; CK_RV _res; public: Slot(const Slot& o): _library(o._library), _slot(o._slot), _res(o._res) { CRYPTOLOG("ID="<<_slot); } /// Slots are created from Library::slotList. /** @note Empty constructor needs immediate assignment. This constructor is public only to be inserted to STL containers. */ Slot(): _slot(0), _res(-1) { CRYPTOLOG("ID="<<_slot); } Slot& operator=(const Slot& o) { _library = o._library; _slot = o._slot; _res = o._res; CRYPTOLOG("ID="<<_slot); return *this; } private: /// Slots are created from Library::slotList. Slot(const Library& lib, CK_SLOT_ID slot): _library(lib), _slot(slot), _res(CKR_OK) { CRYPTOLOG("ID="<<_slot); } bool check(CK_RV result, const std::string& context="") { _res = result; if (_library.exc() && !*this) { if (!context.empty()) { throw access_error(context+": "+error()); } else { throw access_error(error()); } } return _res==CKR_OK; } public: /*! @name C Like Error Handling You are strongly recommended not to disable exception handling. If you disable it, you must check after every operation whether it was successful or not. These methods provide all you need for that. */ //@{ /*! @return @c true if last cryptoki on this object call was successful */ operator bool() { return _res==CKR_OK; } /*! @return error text of last cryptoki call */ std::string error() { return _library.error(_res); } //@} /// Access to the Library. Library& library() { return _library; } /// Get the Slot's MechanismInfo given a @c CK_MECHANISM_TYPE /** Used internally by mechanismlist(). */ MechanismInfo mechanisminfo(CK_MECHANISM_TYPE mechanism) { CRYPTOLOG("log"); CK_MECHANISM_INFO info; //! calls @c C_GetMechanismInfo check(_library->C_GetMechanismInfo(_slot, mechanism, &info), CRYPTOKI_FN_LOG("C_GetMechanismInfo")); return MechanismInfo(mechanism, info); } /// Get a list of the Slot's mechanisms. MechanismList mechanismlist() { CRYPTOLOG("log"); MechanismList res; CK_ULONG count(0); //! calls @c C_GetMechanismList if (!check(_library->C_GetMechanismList(_slot, 0, &count), CRYPTOKI_FN_LOG("C_GetMechanismList")) || !count) return res; CK_MECHANISM_TYPE* mechanisms = 0; try { mechanisms = new CK_MECHANISM_TYPE[count]; if (!check(_library->C_GetMechanismList(_slot, mechanisms, &count), CRYPTOKI_FN_LOG("C_GetMechanismList"))) { delete[] mechanisms; return res; } for (CK_ULONG i(0); iC_GetSlotInfo(_slot, &cInfo), CRYPTOKI_FN_LOG("C_GetSlotInfo"))) return SlotInfo(); return SlotInfo(cInfo); } //! Read Token Information TokenInfo tokeninfo() { CRYPTOLOG("log"); //! calls @c C_GetTokenInfo CK_TOKEN_INFO cInfo; if (!check(_library->C_GetTokenInfo(_slot, &cInfo), CRYPTOKI_FN_LOG("C_GetTokenInfo"))) return TokenInfo(); return TokenInfo(cInfo); } /// Initialize a token. /** If the token has not been initialized (i.e. new from the factory), then the @c pin parameter becomes the initial value of the SO PIN. If the token is being reinitialized, the @c pin parameter is checked against the existing SO PIN to authorize the initialization operation. In both cases, the SO PIN is the value @c pin after the function completes successfully. If the SO PIN is lost, then the card must be reinitialized using a mechanism outside the scope of this standard. The CKF_TOKEN_INITIALIZED flag in the CK_TOKEN_INFO structure indicates the action that will result from calling C_InitToken. If set, the token will be reinitialized, and the client must supply the existing SO password in @c pin. When a token is initialized, all objects that can be destroyed are destroyed (i.e., all except for “indestructible” objects such as keys built into the token). Also, access by the normal user is disabled until the SO sets the normal user’s PIN. Depending on the token, some “default” objects may be created, and attributes of some objects may be set to default values. If the token has a “protected authentication path”, as indicated by the CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then that means that there is some way for a user to be authenticated to the token without having the application send a PIN through the Cryptoki library. One such possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot device. To initialize a token with such a protected authentication path, the @c pin parameter to C_InitToken should be empty. During the execution of C_InitToken, the SO’s PIN will be entered through the protected authentication path. If the token has a protected authentication path other than a PINpad, then it is token- dependent whether or not C_InitToken can be used to initialize the token. A token cannot be initialized if Cryptoki detects that any application has an open session with it; when a call to C_InitToken is made under such circumstances, the call fails with error CKR_SESSION_EXISTS. Unfortunately, it may happen when C_InitToken is called that some other application does have an open session with the token, but Cryptoki cannot detect this, because it cannot detect anything about other applications using the token. If this is the case, then the consequences of the C_InitToken call are undefined. The C_InitToken function may not be sufficient to properly initialize complex tokens. In these situations, an initialization mechanism outside the scope of Cryptoki must be employed. The definition of “complex token” is product specific. @param pin SO's initial PIN @param label label of the token */ bool inittoken(std::string pin, FixString<32> label) { CRYPTOLOG("log"); //! calls @c C_InitToken std::string in(label); in.resize(32, ' '); if (pin.size()) return check(_library->C_InitToken (_slot, (unsigned char*)&pin[0], pin.size(), (unsigned char*)&in[0]), CRYPTOKI_FN_LOG("C_InitToken")); else return check(_library->C_InitToken (_slot, 0, 0, // pin from external pin pad (unsigned char*)&in[0]), CRYPTOKI_FN_LOG("C_InitToken")); } /*! @todo Not implemented: @code class SlotEventListener { public: virtual void slotEvent() = 0; } bool registerforslotevent(SlotEventListener&) { CRYPTOLOG("log"); //! calls @c C_WaitForSlotEvent return check(_library->C_WaitForSlotEvent(CK_FLAGS, &_slot, 0), CRYPTOKI_FN_LOG("C_WaitForSlotEvent")); } @endcode */ }; /// Session Management /** @note Not implemented: CK_RV C_CloseAllSessions(CK_SLOT_ID); */ class Session { private: friend class Login; friend class Object; typedef std::multimap Slots; Slot _slot; CK_SESSION_HANDLE _session; CK_RV _res; static Slots& slots() { static Slots _slots; return _slots; } Session(); // forbidden bool check(CK_RV result, const std::string& context="") { _res = result; if (_slot.library().exc() && !*this) { if (!context.empty()) { throw access_error(context+": "+error()); } else { throw access_error(error()); } } return _res==CKR_OK; } //! calls @c C_OpenSession if it's the first session void open(bool rw=false) { CRYPTOLOG("references: "<C_OpenSession (_slot._slot, CKF_SERIAL_SESSION|(rw?CKF_RW_SESSION:0), 0, 0, &_session), CRYPTOKI_FN_LOG("C_OpenSession")); } else { _session = slots().find(_slot._slot)->second; } slots().insert(std::make_pair(_slot._slot, _session)); } //! calls @c C_CloseSession if it's the last session void close() { CRYPTOLOG("references: "<C_CloseSession(_session), CRYPTOKI_FN_LOG("C_CloseSession")); } else { slots().erase(slots().find(_slot._slot)); } _session=0; } public: //! Opens a new session. /*! @param slot slot to open a session on @param rw whether session is read/write or read only*/ Session(const Slot& slot, bool rw=false): _slot(slot), _session(0), _res(CKR_OK) { CRYPTOLOG("log"); open(rw); //! @todo pass parameter } //! Copy session. Session(const Session& o): _slot(o._slot), _session(o._session), _res(CKR_OK) { CRYPTOLOG("log"); slots().insert(std::make_pair(_slot._slot, _session)); //! @todo pass parameter } ~Session() try { CRYPTOLOG("log "<<(std::uncaught_exception()?"IN EXCEPTION":"")); try { logout(); } catch (const std::exception& x) { CRYPTOLOG("caught: "<C_CancelFunction(_session), CRYPTOKI_FN_LOG("C_CancelFunction")); } //! Create a new object. Object create(const AttributeList& attrs); std::string digest(std::string in) { CRYPTOLOG("log"); std::string res; res.resize(in.size()); CK_ULONG size(res.size()); //! @todo check if size is ok //! calls @c C_Digest check(_slot.library()->C_Digest (_session, (unsigned char*)&in[0], in.size(), (unsigned char*)&res[0], &size), CRYPTOKI_FN_LOG("C_Digest")); res.resize(size); return res; } std::string digestencryptupdate(std::string in) { CRYPTOLOG("log"); std::string res; res.resize(in.size()); CK_ULONG size(res.size()); //! @todo check if size is ok //! calls @c C_DigestEncryptUpdate check(_slot.library()->C_DigestEncryptUpdate (_session, (unsigned char*)&in[0], in.size(), (unsigned char*)&res[0], &size), CRYPTOKI_FN_LOG("C_DigestEncryptUpdate")); res.resize(size); return res; } /*! @todo Not implemented: @code bool digestfinal() { CRYPTOLOG("log"); //! calls @c C_DigestFinal return check(_slot.library()->C_DigestFinal(_session, CK_BYTE_PTR, CK_ULONG_PTR), CRYPTOKI_FN_LOG("C_DigestFinal")); } @endcode */ /*! @todo Not implemented: @code bool digestinit() { CRYPTOLOG("log"); //! calls @c C_DigestInit return check(_slot.library()->C_DigestInit(_session, CK_MECHANISM_PTR), CRYPTOKI_FN_LOG("C_DigestInit")); } @endcode */ /*! @todo Not implemented: @code bool digestupdate() { CRYPTOLOG("log"); //! calls @c C_DigestUpdate return check(_slot.library()->C_DigestUpdate(_session, CK_BYTE_PTR, CK_ULONG), CRYPTOKI_FN_LOG("C_DigestUpdate")); } @endcode */ /*! @todo Not implemented: @code bool findobjectsfinal() { CRYPTOLOG("log"); //! calls @c C_FindObjectsFinal return check(_slot.library()->C_FindObjectsFinal(_session), CRYPTOKI_FN_LOG("C_FindObjectsFinal")); } @endcode */ /*! @todo Not implemented: @code bool findobjectsinit() { CRYPTOLOG("log"); //! calls @c C_FindObjectsInit return check(_slot.library()->C_FindObjectsInit(_session, CK_ATTRIBUTE_PTR, CK_ULONG), CRYPTOKI_FN_LOG("C_FindObjectsInit")); } @endcode */ /*! @todo Not implemented: @code bool findobjects() { CRYPTOLOG("log"); //! calls @c C_FindObjects return check(_session->_slot.library()->C_FindObjects(_session, CK_OBJECT_HANDLE_PTR, CK_ULONG, CK_ULONG_PTR), CRYPTOKI_FN_LOG("C_FindObjects")); } @endcode */ /*! @todo Not implemented: @code bool generaterandom() { CRYPTOLOG("log"); //! calls @c C_GenerateRandom return check(_slot.library()->C_GenerateRandom(_session, CK_BYTE_PTR, CK_ULONG), CRYPTOKI_FN_LOG("C_GenerateRandom")); } @endcode */ /*! @todo Not implemented: @code bool getfunctionstatus() { CRYPTOLOG("log"); //! calls @c C_GetFunctionStatus return check(_slot.library()->C_GetFunctionStatus(_session), CRYPTOKI_FN_LOG("C_GetFunctionStatus")); } @endcode */ /*! @todo Not implemented: @code bool getoperationstate() { CRYPTOLOG("log"); //! calls @c C_GetOperationState return check(_slot.library()->C_GetOperationState(_session, CK_BYTE_PTR, CK_ULONG_PTR), CRYPTOKI_FN_LOG("C_GetOperationState")); } @endcode */ /** definition of session info: @code struct CK_SESSION_INFO { CK_SLOT_ID slotID; CK_STATE state; CK_FLAGS flags; CK_ULONG ulDeviceError; }; @endcode where: - @c slotID ID of the slot that interfaces with the token - @c state The state of the session - @c 0 @c CKS_RO_PUBLIC_SESSION - @c 1 @c CKS_RO_USER_FUNCTIONS - @c 2 @c CKS_RW_PUBLIC_SESSION - @c 3 @c CKS_RW_USER_FUNCTIONS - @c 4 @c CKS_RW_SO_FUNCTIONS - @c flags Bit flags that define the type of session; the flags are defined as: - @c CKF_RW_SESSION - True if the session is read/write. - False if the session is read only. - @c CKF_SERIAL_SESSION Deprecated, always true. - @c ulDeviceError An error code defined by the cryptographic device. Used for errors not covered by Cryptoki. */ struct Info: public CK_SESSION_INFO { Info(const CK_SESSION_INFO& si): CK_SESSION_INFO(si) { } bool readonly() { return !readwrite(); } bool readwrite() { return flags|CKF_RW_SESSION; } std::string stateString() { switch (state) { case 0: return "CKS_RO_PUBLIC_SESSION"; case 1: return "CKS_RO_USER_FUNCTIONS"; case 2: return "CKS_RW_PUBLIC_SESSION "; case 3: return "CKS_RW_USER_FUNCTIONS"; case 4: return "CKS_RW_SO_FUNCTIONS"; default: return ""; } } }; /** @return session information */ Info getsessioninfo() { CRYPTOLOG("log"); CK_SESSION_INFO info; //! calls @c C_GetSessionInfo check(_slot.library()->C_GetSessionInfo(_session, &info), CRYPTOKI_FN_LOG("C_GetSessionInfo")); return info; } /*! @todo Not implemented: @code bool seedrandom() { CRYPTOLOG("log"); //! calls @c C_SeedRandom return check(_slot.library()->C_SeedRandom(_session, CK_BYTE_PTR, CK_ULONG), CRYPTOKI_FN_LOG("C_SeedRandom")); } @endcode */ /*! @todo Not implemented: @code bool setpin() { CRYPTOLOG("log"); //! calls @c C_SetPIN return check(_slot.library()->C_SetPIN(_session, CK_CHAR_PTR, CK_ULONG, CK_CHAR_PTR, CK_ULONG), CRYPTOKI_FN_LOG("C_SetPIN")); } @endcode */ /*! @todo Not implemented: @code bool initpin() { CRYPTOLOG("log"); //! calls @c C_InitPIN return check(_slot.library()->C_InitPIN(_session, CK_CHAR_PTR, CK_ULONG), CRYPTOKI_FN_LOG("C_InitPIN")); } @endcode */ //@} /** @name login with pin Unlock access with pin (login) and unlock after use (logout). */ //@{ private: class Login { public: Login(Session& session, const std::string& pin, CK_USER_TYPE userType=CKU_USER): _session(session) { CRYPTOLOG("log"); //! calls @c C_Login try { _session.check(_session._slot.library()->C_Login (_session._session, userType, const_cast((const CK_CHAR*)pin.c_str()), (int)pin.size()), CRYPTOKI_FN_LOG("C_Login")); } catch (std::exception& x) { throw wrong_pin(x.what()); } } ~Login() { try { //! calls @c C_Logout _session.check(_session._slot.library()->C_Logout (_session._session), CRYPTOKI_FN_LOG("C_Logout")); } catch (const std::exception& x) { if (!std::uncaught_exception()) throw; CRYPTOLOG("ERROR during error cleanup: "<(new Login(*this, pin, userType)); } /// Logout from card /** Undo the last login. */ void logout() { CRYPTOLOG("log"); _login.reset(); } std::shared_ptr _login; //@} }; class Object { private: friend class Session; CK_OBJECT_HANDLE _object; Session _session; CK_RV _res; bool check(CK_RV result, const std::string& context="") { _res = result; if (_session._slot.library().exc() && !*this) { if (!context.empty()) { throw access_error(context+": "+error()); } else { throw access_error(error()); } } return _res==CKR_OK; } Object(); // forbidden Object(const Session& session, CK_OBJECT_HANDLE obj): _object(obj), _session(session), _res(CKR_OK) { CRYPTOLOG("log"); } public: /*! @name Comfortable Access Use these methods in favour of the Low Level Cryptoki Functions. They provide a higher level simpler access. */ //@{ std::string encrypt(const std::string& data, CK_MECHANISM_TYPE type, const std::string& param=std::string()) { CRYPTOLOG("log"); CRYPTOLOG("encryptinit"); encryptinit(type, param); CRYPTOLOG("encrypt"); return encrypt(data); //! @todo don't call encryptfinal()? } std::string decrypt(const std::string& data, CK_MECHANISM_TYPE type, const std::string& param=std::string()) { CRYPTOLOG("log"); CRYPTOLOG("decryptinit"); decryptinit(type, param); CRYPTOLOG("decrypt"); return decrypt(data); //! @todo don't call decryptfinal()? } std::string sign(const std::string& data, CK_MECHANISM_TYPE type, const std::string& param=std::string()) { CRYPTOLOG("log"); CRYPTOLOG("signinit"); signinit(type, param); CRYPTOLOG("sign"); return sign(data); //! @todo don't call signfinal()? } bool verify(const std::string& data, const std::string& signature, CK_MECHANISM_TYPE type, const std::string& param=std::string()) { CRYPTOLOG("log"); CRYPTOLOG("verifyinit"); verifyinit(type, param); CRYPTOLOG("verify"); return verify(data, signature); //! @todo don't call verifyfinal()? } bool destroy() { CRYPTOLOG("log"); //! calls @c C_DestroyObject return check(_session._slot.library()->C_DestroyObject (_session._session, _object), CRYPTOKI_FN_LOG("C_DestroyObject")); } //! Get a Single Attribute Attribute operator[](CK_ATTRIBUTE_TYPE a) { CRYPTOLOG("log"); return attribute(a); } //! Get a Single Attribute Attribute attribute(CK_ATTRIBUTE_TYPE a) { CRYPTOLOG("log"); Attribute res; CK_ATTRIBUTE attr; attr.type = a; attr.pValue = 0; attr.ulValueLen = 0; //! calls @c C_GetAttributeValue if (!check(_session._slot.library()->C_GetAttributeValue (_session._session, _object, &attr, 1), CRYPTOKI_FN_LOG("C_GetAttributeValue")) || !((long)attr.ulValueLen>0l)) //! Without exception handling, size and type must be checked too. return res; try { attr.pValue = malloc(attr.ulValueLen); attr.pValue = memset(attr.pValue, 0, attr.ulValueLen); if (check(_session._slot.library()->C_GetAttributeValue (_session._session, _object, &attr, 1), CRYPTOKI_FN_LOG("C_GetAttributeValue"))) /*! @todo There's no @c CKA_WRAP_TEMPLATE in Open Cryptoki. From the Specs: «In the special case of an attribute whose value is an array of attributes, for example CKA_WRAP_TEMPLATE, where it is passed in with pValue not NULL, then if the pValue of elements within the array is NULL_PTR then the ulValueLen of elements within the array will be set to the required length. If the pValue of elements within the array is not NULL_PTR, then the ulValueLen element of attributes within the array must reflect the space that the corresponding pValue points to, and pValue is filled in if there is sufficient room. Therefore it is important to initialize the contents of a buffer before calling C_GetAttributeValue to get such an array value. If any ulValueLen within the array isn't large enough, it will be set to -1 and the function will return CKR_BUFFER_TOO_SMALL, as it does if an attribute in the pTemplate argument has ulValueLen too small. Note that any attribute whose value is an array of attributes is identifiable by virtue of the attribute type having the CKF_ARRAY_ATTRIBUTE bit set.» */ res = Attribute(attr); else free(attr.pValue); } catch (...) { free(attr.pValue); throw; } return res; } //! Get a List of Attributes. /*! If @c attrs is empty, all available attributes are returned. Attributes that cannot be accessed or that are not available in this Object won't be in the result map. There is no exception in this case. */ AttributeMap attributes(AttributeTypeList attrs = AttributeTypeList()) { CRYPTOLOG("log"); AttributeMap res; //! Gets all attributes, if @c attrs is empty if (attrs.empty()) { attrs.push_back(CKA_CLASS); attrs.push_back(CKA_TOKEN); attrs.push_back(CKA_PRIVATE); attrs.push_back(CKA_LABEL); attrs.push_back(CKA_APPLICATION); attrs.push_back(CKA_VALUE); attrs.push_back(CKA_OBJECT_ID); attrs.push_back(CKA_CERTIFICATE_TYPE); attrs.push_back(CKA_ISSUER); attrs.push_back(CKA_SERIAL_NUMBER); attrs.push_back(CKA_AC_ISSUER); attrs.push_back(CKA_OWNER); attrs.push_back(CKA_ATTR_TYPES); attrs.push_back(CKA_TRUSTED); attrs.push_back(CKA_KEY_TYPE); attrs.push_back(CKA_SUBJECT); attrs.push_back(CKA_ID); attrs.push_back(CKA_SENSITIVE); attrs.push_back(CKA_ENCRYPT); attrs.push_back(CKA_DECRYPT); attrs.push_back(CKA_WRAP); attrs.push_back(CKA_UNWRAP); attrs.push_back(CKA_SIGN); attrs.push_back(CKA_SIGN_RECOVER); attrs.push_back(CKA_VERIFY); attrs.push_back(CKA_VERIFY_RECOVER); attrs.push_back(CKA_DERIVE); attrs.push_back(CKA_START_DATE); attrs.push_back(CKA_END_DATE); attrs.push_back(CKA_MODULUS); attrs.push_back(CKA_MODULUS_BITS); attrs.push_back(CKA_PUBLIC_EXPONENT); attrs.push_back(CKA_PRIVATE_EXPONENT); attrs.push_back(CKA_PRIME_1); attrs.push_back(CKA_PRIME_2); attrs.push_back(CKA_EXPONENT_1); attrs.push_back(CKA_EXPONENT_2); attrs.push_back(CKA_COEFFICIENT); attrs.push_back(CKA_PRIME); attrs.push_back(CKA_SUBPRIME); attrs.push_back(CKA_BASE); attrs.push_back(CKA_PRIME_BITS); //attrs.push_back(CKA_SUBPRIME_BITS); attrs.push_back(CKA_VALUE_BITS); attrs.push_back(CKA_VALUE_LEN); attrs.push_back(CKA_EXTRACTABLE); attrs.push_back(CKA_LOCAL); attrs.push_back(CKA_NEVER_EXTRACTABLE); attrs.push_back(CKA_ALWAYS_SENSITIVE); attrs.push_back(CKA_KEY_GEN_MECHANISM); attrs.push_back(CKA_MODIFIABLE); attrs.push_back(CKA_ECDSA_PARAMS); attrs.push_back(CKA_EC_PARAMS); attrs.push_back(CKA_EC_POINT); attrs.push_back(CKA_SECONDARY_AUTH); attrs.push_back(CKA_AUTH_PIN_FLAGS); attrs.push_back(CKA_HW_FEATURE_TYPE); attrs.push_back(CKA_RESET_ON_INIT); attrs.push_back(CKA_HAS_RESET); attrs.push_back(CKA_VENDOR_DEFINED); //attrs.push_back(CKA_IBM_OPAQUE); } for (AttributeTypeList::const_iterator it(attrs.begin()); it!=attrs.end(); ++it) { CK_ATTRIBUTE attr; attr.type = *it; attr.pValue = 0; attr.ulValueLen = 0; try { //! calls @c C_GetAttributeValue if (_session._slot.library()->C_GetAttributeValue (_session._session, _object, &attr, 1) == CKR_ATTRIBUTE_TYPE_INVALID || _res == CKR_ATTRIBUTE_SENSITIVE) { continue; //! Ignores unsupported Attributes. } else { check(_res, CRYPTOKI_FN_LOG("C_GetAttributeValue")); if ((long)attr.ulValueLen>0l) { attr.pValue = malloc(attr.ulValueLen); attr.pValue = memset(attr.pValue, 0, attr.ulValueLen); if (check(_session._slot.library()->C_GetAttributeValue (_session._session, _object, &attr, 1), CRYPTOKI_FN_LOG("C_GetAttributeValue"))) /*! @todo There's no @c CKA_WRAP_TEMPLATE in Open Cryptoki. From the Specs: «In the special case of an attribute whose value is an array of attributes, for example CKA_WRAP_TEMPLATE, where it is passed in with pValue not NULL, then if the pValue of elements within the array is NULL_PTR then the ulValueLen of elements within the array will be set to the required length. If the pValue of elements within the array is not NULL_PTR, then the ulValueLen element of attributes within the array must reflect the space that the corresponding pValue points to, and pValue is filled in if there is sufficient room. Therefore it is important to initialize the contents of a buffer before calling C_GetAttributeValue to get such an array value. If any ulValueLen within the array isn't large enough, it will be set to -1 and the function will return CKR_BUFFER_TOO_SMALL, as it does if an attribute in the pTemplate argument has ulValueLen too small. Note that any attribute whose value is an array of attributes is identifiable by virtue of the attribute type having the CKF_ARRAY_ATTRIBUTE bit set.» */ res.insert(std::make_pair(attr.type, Attribute(attr))); else free(attr.pValue); } else if (*it==CKA_MODULUS && attr.ulValueLen==0) { /*! @bug This is a bug in opensc-pkcs11.so: If @c CKA_MODULUS has a size of 0 bytes, the following query to @c CKA_MODULUS_BITS ends in a segmentation fault. @note @c CKA_MODULUS @b must immediately be followed by @c CKA_MODULUS_BITS in the attribute list, because if the size of @c CKA_MODULUS is 0 Bytes, the following attribute query is skipped as a work around to this bug. */ if (++it==attrs.end()) break; } } } catch (...) { free(attr.pValue); throw; } } return res; } //@} /*! @name C Like Error Handling You are strongly recommended not to disable exception handling. If you disable it, you must check after every operation whether it was successful or not. These methods provide all you need for that. */ //@{ /*! @return @c true if last cryptoki on this object call was successful */ operator bool() { return _res==CKR_OK; } /*! @return error text of last cryptoki call */ std::string error() { return _session._slot.library().error(_res); } //@} /*! @name Low Level Cryptoki Functions Direct access to the low level cryptoki API. Better use the comfort methods. */ //@{ /*! @todo Not implemented: @code bool copyobject() { CRYPTOLOG("log"); //! calls @c C_CopyObject return check(_session._slot.library()->C_CopyObject(_session._session, CK_OBJECT_HANDLE, CK_ATTRIBUTE_PTR, CK_ULONG, CK_OBJECT_HANDLE_PTR), CRYPTOKI_FN_LOG("C_CopyObject")); } @endcode */ bool decryptinit(CK_MECHANISM_TYPE type, std::string param) { CRYPTOLOG("log"); CK_MECHANISM mech = { type, param.size()?¶m[0]:0, (CK_ULONG)param.size() }; CRYPTOLOG("decryptinit: type="<C_DecryptInit (_session._session, &mech, _object), CRYPTOKI_FN_LOG("C_DecryptInit")); } //! requires decryptinit to be called before std::string decrypt(const std::string& in) { CRYPTOLOG("log"); std::string res; CK_ULONG size(0); // two calls, first to get minimum buffer length CRYPTOLOG("get size"); //! calls @c C_Decrypt check(_session._slot.library()->C_Decrypt (_session._session, const_cast((const unsigned char*)&in[0]), in.size(), 0, &size), CRYPTOKI_FN_LOG("C_Decrypt")); CRYPTOLOG("maximum size is "<C_Decrypt (_session._session, const_cast((const unsigned char*)&in[0]), in.size(), (unsigned char*)&res[0], &size), CRYPTOKI_FN_LOG("C_Decrypt")); CRYPTOLOG("exact size is "<C_DecryptDigestUpdate (_session._session, const_cast((const unsigned char*)&in[0]), in.size(), (unsigned char*)&res[0], &size), CRYPTOKI_FN_LOG("C_DecryptDigestUpdate")); res.resize(size); return res; } bool decryptfinal() { CRYPTOLOG("log"); //! calls @c C_DecryptFinal return check(_session._slot.library()->C_DecryptFinal (_session._session, 0, 0), CRYPTOKI_FN_LOG("C_DecryptFinal")); //! @todo does this work? } std::string decryptupdate(std::string in) { CRYPTOLOG("log"); std::string res; res.resize(in.size()); CK_ULONG size(res.size()); //! @todo check if size is ok //! calls @c C_DecryptUpdate check(_session._slot.library()->C_DecryptUpdate (_session._session, (unsigned char*)&in[0], in.size(), (unsigned char*)&res[0], &size), CRYPTOKI_FN_LOG("C_DecryptUpdate")); res.resize(size); return res; } std::string decryptverifyupdate(std::string in) { CRYPTOLOG("log"); std::string res; res.resize(in.size()); CK_ULONG size(res.size()); //! @todo check if size is ok //! calls @c C_DecryptVerifyUpdate check(_session._slot.library()->C_DecryptVerifyUpdate (_session._session, (unsigned char*)&in[0], in.size(), (unsigned char*)&res[0], &size), CRYPTOKI_FN_LOG("C_DecryptVerifyUpdate")); res.resize(size); return res; } std::string sign(std::string in) { CRYPTOLOG("log"); std::string res; CK_ULONG size(0); check(_session._slot.library()->C_Sign (_session._session, (unsigned char*)&in[0], in.size(),0, &size), CRYPTOKI_FN_LOG("C_Sign")); CRYPTOLOG("maximum size is "<C_Sign (_session._session, (unsigned char*)&in[0], in.size(), (unsigned char*)&res[0], &size), CRYPTOKI_FN_LOG("C_Sign")); CRYPTOLOG("exact size is "<C_SignEncryptUpdate (_session._session, (unsigned char*)&in[0], in.size(), (unsigned char*)&res[0], &size), CRYPTOKI_FN_LOG("C_SignEncryptUpdate")); res.resize(size); return res; } /*! @todo Not implemented: @code bool signfinal() { CRYPTOLOG("log"); //! calls @c C_SignFinal return check(_slot.library()->C_SignFinal(_session, CK_BYTE_PTR, CK_ULONG_PTR), CRYPTOKI_FN_LOG("C_SignFinal")); } @endcode */ std::string signrecover(std::string in) { CRYPTOLOG("log"); std::string res; res.resize(in.size()); CK_ULONG size(res.size()); //! @todo check if size is ok //! calls @c C_SignRecover check(_session._slot.library()->C_SignRecover (_session._session, (unsigned char*)&in[0], in.size(), (unsigned char*)&res[0], &size), CRYPTOKI_FN_LOG("C_SignRecover")); res.resize(size); return res; } /*! @todo Not implemented: @code bool signupdate() { CRYPTOLOG("log"); //! calls @c C_SignUpdate return check(_session._slot.library()->C_SignUpdate(_session._session, CK_BYTE_PTR, CK_ULONG), CRYPTOKI_FN_LOG("C_SignUpdate")); } @endcode */ bool verify(std::string data, std::string signature) { CRYPTOLOG("log"); //! calls @c C_Verify return check(_session._slot.library()->C_Verify (_session._session, (unsigned char*)&data[0], data.size(), (unsigned char*)&signature[0], signature.size()), CRYPTOKI_FN_LOG("C_Verify")); } /*! @todo Not implemented: @code bool verifyfinal() { CRYPTOLOG("log"); //! calls @c C_VerifyFinal return check(_session._slot.library()->C_VerifyFinal(_session._session, CK_BYTE_PTR, CK_ULONG), CRYPTOKI_FN_LOG("C_VerifyFinal")); } @endcode */ std::string verifyrecover(std::string in) { CRYPTOLOG("log"); std::string res; res.resize(in.size()); CK_ULONG size(res.size()); //! @todo check if size is ok //! calls @c C_VerifyRecover check(_session._slot.library()->C_VerifyRecover (_session._session, (unsigned char*)&in[0], in.size(), (unsigned char*)&res[0], &size), CRYPTOKI_FN_LOG("C_VerifyRecover")); res.resize(size); return res; } /*! @todo Not implemented: @code bool verifyupdate() { CRYPTOLOG("log"); //! calls @c C_VerifyUpdate return check(_session._slot.library()->C_VerifyUpdate(_session._session, CK_BYTE_PTR, CK_ULONG), CRYPTOKI_FN_LOG("C_VerifyUpdate")); } @endcode */ /*! @todo Not implemented: @code bool derivekey() { CRYPTOLOG("log"); //! calls @c C_DeriveKey return check(_session._slot.library()->C_DeriveKey(_session._session, CK_MECHANISM_PTR, CK_OBJECT_HANDLE, CK_ATTRIBUTE_PTR, CK_ULONG, CK_OBJECT_HANDLE_PTR), CRYPTOKI_FN_LOG("C_DeriveKey")); } @endcode */ /*! @todo Not implemented: @code bool digestkey() { CRYPTOLOG("log"); //! calls @c C_DigestKey return check(_session._slot.library()->C_DigestKey(_session._session, CK_OBJECT_HANDLE), CRYPTOKI_FN_LOG("C_DigestKey")); } @endcode */ bool encryptinit(CK_MECHANISM_TYPE type, const std::string& param) { CRYPTOLOG("log"); CK_MECHANISM mech = { type, param.size()?const_cast((const void*)¶m[0]):0, (CK_ULONG)param.size() }; CRYPTOLOG("encryptinit: type="<C_EncryptInit (_session._session, &mech, _object), CRYPTOKI_FN_LOG("C_EncryptInit")); } std::string encrypt(const std::string& in) { CRYPTOLOG("log"); std::string res; CK_ULONG size(0); // two calls, first to get minimum buffer length CRYPTOLOG("get size"); //! calls @c C_Encrypt check(_session._slot.library()->C_Encrypt (_session._session, const_cast((const unsigned char*)&in[0]), in.size(), 0, &size), CRYPTOKI_FN_LOG("C_Decrypt")); CRYPTOLOG("maximum size is "<C_Encrypt (_session._session, const_cast((const unsigned char*)&in[0]), in.size(), (unsigned char*)&res[0], &size), CRYPTOKI_FN_LOG("C_Encrypt")); res.resize(size); return res; } /*! @todo Not implemented: @code bool encryptfinal() { CRYPTOLOG("log"); //! calls @c C_EncryptFinal return check(_session._slot.library()->C_EncryptFinal(_session._session, CK_BYTE_PTR, CK_ULONG_PTR), CRYPTOKI_FN_LOG("C_EncryptFinal")); } @endcode */ std::string encryptupdate(std::string in) { CRYPTOLOG("log"); std::string res; res.resize(in.size()); CK_ULONG size(res.size()); //! @todo check if size is ok //! calls @c C_EncryptUpdate check(_session._slot.library()->C_EncryptUpdate (_session._session, (unsigned char*)&in[0], in.size(), (unsigned char*)&res[0], &size), CRYPTOKI_FN_LOG("C_EncryptUpdate")); res.resize(size); return res; } /*! @todo Not implemented: @code bool generatekey() { CRYPTOLOG("log"); //! calls @c C_GenerateKey return check(_session._slot.library()->C_GenerateKey(_session._session, CK_MECHANISM_PTR, CK_ATTRIBUTE_PTR, CK_ULONG, CK_OBJECT_HANDLE_PTR), CRYPTOKI_FN_LOG("C_GenerateKey")); } @endcode */ /*! @todo Not implemented: @code bool generatekeypair() { CRYPTOLOG("log"); //! calls @c C_GenerateKeyPair return check(_session._slot.library()->C_GenerateKeyPair(_session._session, CK_MECHANISM_PTR, CK_ATTRIBUTE_PTR, CK_ULONG, CK_ATTRIBUTE_PTR, CK_ULONG, CK_OBJECT_HANDLE_PTR, CK_OBJECT_HANDLE_PTR), CRYPTOKI_FN_LOG("C_GenerateKeyPair")); } @endcode */ /*! @todo Not implemented: @code bool getobjectsize() { CRYPTOLOG("log"); //! calls @c C_GetObjectSize return check(_session._slot.library()->C_GetObjectSize(_session._session, CK_OBJECT_HANDLE, CK_ULONG_PTR), CRYPTOKI_FN_LOG("C_GetObjectSize")); } @endcode */ /*! @todo Not implemented: @code bool setattributevalue() { CRYPTOLOG("log"); //! calls @c C_SetAttributeValue return check(_session._slot.library()->C_SetAttributeValue(_session._session, CK_OBJECT_HANDLE, CK_ATTRIBUTE_PTR, CK_ULONG), CRYPTOKI_FN_LOG("C_SetAttributeValue")); } @endcode */ /*! @todo Not implemented: @code bool setoperationstate() { CRYPTOLOG("log"); //! calls @c C_SetOperationState return check(_session._slot.library()->C_SetOperationState(_session._session, CK_BYTE_PTR, CK_ULONG, CK_OBJECT_HANDLE, CK_OBJECT_HANDLE), CRYPTOKI_FN_LOG("C_SetOperationState")); } @endcode */ bool signinit(CK_MECHANISM_TYPE type, std::string param) { CRYPTOLOG("log"); CK_MECHANISM mech = { type, param.size()?¶m[0]:0, (CK_ULONG)param.size() }; CRYPTOLOG("signinit: type="<C_SignInit (_session._session, &mech, _object), CRYPTOKI_FN_LOG("C_SignInit")); } /*! @todo Not implemented: @code bool signrecoverinit() { CRYPTOLOG("log"); //! calls @c C_SignRecoverInit return check(_session._slot.library()->C_SignRecoverInit(_session._session, CK_MECHANISM_PTR, CK_OBJECT_HANDLE), CRYPTOKI_FN_LOG("C_SignRecoverInit")); } @endcode */ /*! @todo Not implemented: @code bool unwrapkey() { CRYPTOLOG("log"); //! calls @c C_UnwrapKey return check(_session._slot.library()->C_UnwrapKey(_session._session, CK_MECHANISM_PTR, CK_OBJECT_HANDLE, CK_BYTE_PTR, CK_ULONG, CK_ATTRIBUTE_PTR, CK_ULONG, CK_OBJECT_HANDLE_PTR), CRYPTOKI_FN_LOG("C_UnwrapKey")); } @endcode */ bool verifyinit(CK_MECHANISM_TYPE type, std::string param) { CRYPTOLOG("log"); CK_MECHANISM mech = { type, param.size()?¶m[0]:0, (CK_ULONG)param.size() }; CRYPTOLOG("verifyinit: type="<C_VerifyInit (_session._session, &mech, _object), CRYPTOKI_FN_LOG("C_VerifyInit")); } /*! @todo Not implemented: @code bool verifyrecoverinit() { CRYPTOLOG("log"); //! calls @c C_VerifyRecoverInit return check(_session._slot.library()->C_VerifyRecoverInit(_session._session, CK_MECHANISM_PTR, CK_OBJECT_HANDLE), CRYPTOKI_FN_LOG("C_VerifyRecoverInit")); } @endcode */ /*! @todo Not implemented: @code bool wrapkey() { CRYPTOLOG("log"); //! calls @c C_WrapKey return check(_session._slot.library()->C_WrapKey(_session._session, CK_MECHANISM_PTR, CK_OBJECT_HANDLE, CK_OBJECT_HANDLE, CK_BYTE_PTR, CK_ULONG_PTR), CRYPTOKI_FN_LOG("C_WrapKey")); } @endcode */ //@} }; //@} } //! @addtogroup cryptokitypes //@{ /// Append a cryptoki::Attribute to a cryptoki::AttributeList. inline cryptoki::AttributeList& operator<<(cryptoki::AttributeList& list, const cryptoki::Attribute& attr) { CRYPTOLOG("log"); list.push_back(attr); return list; } /// Append a cryptoki::Attribute to a new copy of a cryptoki::AttributeList. inline cryptoki::AttributeList operator<<(const cryptoki::AttributeList& list, const cryptoki::Attribute& attr) { CRYPTOLOG("log"); cryptoki::AttributeList res(list); res.push_back(attr); return res; } //@} #endif